Τι είναι οι παλινδρομικοί αριθμοί;
Παλινδρομικοί
ή παλίνδρομοι αριθμοί είναι αυτοί που διαβάζονται το ίδιο είτε ευθέως είτε
αντίστροφα. Για παράδειγμα, οι αριθμοί 11, 363, 5225, 13931, 1234321, 20300302
είναι παλινδρομικοί. Τους παλινδρομικούς αριθμούς τους συναντάμε συχνά στα
ψυχαγωγικά μαθηματικά, με εφαρμογές στα μαγικά τετράγωνα, τους κύβους του
Ρούμπικ και σε σκακιστικά προβλήματα.
Κατασκευή παλινδρομικών αριθμών
Πώς
μπορούμε να κατασκευάσουμε τέτοιους αριθμούς; Ας επιλέξουμε έναν τυχαίο αριθμό,
για παράδειγμα το 83. Αντιστρέφουμε τη σειρά των ψηφίων, δηλαδή παίρνουμε το 38
και τον προσθέτουμε στον αρχικό μας αριθμό. Προκύπτει έτσι: 83+38=121, έχουμε δηλαδή
έναν παλινδρομικό αριθμό.
Επιλέγουμε
έναν άλλο τυχαίο αριθμό, για παράδειγμα το 67. Αντιστρέφουμε τη σειρά των
ψηφίων του, δηλαδή παίρνουμε το 76 και τον προσθέτουμε στον αρχικό μας αριθμό.
Έχουμε δηλαδή 67+76=143, που όμως δεν είναι παλινδρομικός. Τότε επαναλαμβάνουμε
την ίδια διαδικασία κι έχουμε 143+341=484. Προέκυψε, δηλαδή, ένας παλινδρομικός
αριθμός.
Η
ιδιότητα αυτή που έχουν οι αριθμοί, να καταλήγουν σε παλινδρομικούς μετά από
μερικές προσθέσεις με τον αντεστραμμένο εαυτό τους φαίνεται να ισχύει για
όλους... Υπάρχουν όμως μερικοί αριθμοί για τους οποίους ακόμα δεν έχουμε
καταλήξει σε παλίνδρομο παράγωγό τους. Ο μικρότερος από αυτούς, είναι το 196.
Κατόπιν πολλών πράξεων, φτάσαμε σε αριθμό με 263.000.000 ψηφία, ο οποίος όμως
συνέχιζε να μην είναι παλινδρομικός! Για αριθμούς μικρότερους του 10.000
απαιτούνται το πολύ 24 προσθέσεις και το ρεκόρ αυτό κατέχει ο αριθμός 89.
Πόσοι είναι οι παλινδρομικοί αριθμοί;
Γνωρίζουμε από τον Ευκλείδη ότι οι πρώτοι αριθμοί είναι άπειροι σε πλήθος. Ακόμη. όμως, δεν γνωρίζουμε με βεβαιότητα αν είναι άπειροι και οι παλινδρομικοί αριθμοί.
💥Μπορείτε να υπολογίσετε πόσοι είναι οι τετραψήφιοι παλινδρομικοί αριθμοί;
Ο πρώτος αριθμός της… κολάσεως
Ο Clifford A. Pickover,
διάσημος Αμερικανός συγγραφέας και αρθρογράφος, ερευνητής της IBM για πολλά χρόνια,
έχει ασχοληθεί ιδιαίτερα με τους αριθμούς και την γοητεία που ασκούν στους
ανθρώπους. Έχει συγγράψει δεκάδες βιβλία με ποικίλα θέματα, από τα
μαθηματικά, τη φυσική, τους υπολογιστές και την ιατρική, μέχρι τις τέχνες, τους γρίφους και το θάνατο. Στόχος των
βιβλίων του, που έχουν μεταφραστεί σε δεκάδες γλώσσες, είναι, όπως λέει ο
ίδιος, η έκθεση σε ένα ευρύ κοινό των θαυμάτων της επιστήμης και των
μαθηματικών, χρησιμοποιώντας όμως «παιχνιδιάρικες» έννοιες που θα τραβήξουν το
ενδιαφέρον του κόσμου.
Ο ίδιος «βάφτισε» και έναν παλινδρομικό πρώτο αριθμό, τον 1.000.000.000.000.066.600.000.000.000.001 (\(10^{30} + 666 \cdot 10^{14} + 1\)), ο οποίος ανακαλύφθηκε από τον μαθηματικό Harvey Dubner, γνωστό για την συμβολή του στην πολύ δύσκολη διαδικασία εύρεσης μεγάλων πρώτων αριθμών. Ο συγκεκριμένος αυτός αριθμός έχει πολλές ιδιότητες και ως πρώτος, αλλά και ως παλινδρομικός. Αυτό, όμως, που κέντρισε το ενδιαφέρον στον Pickover είναι ότι έχει 13 μηδενικά αριστερά και 13 δεξιά του 666. Επιπλέον, το πλήθος των ψηφίων του είναι 31 (ο αριθμός 13 αντεστραμμένος).
Τον ονόμασε πρώτο αριθμό του Βηλφεγώρ (Belphegor's prime), ενός από τους επτά πρίγκιπες της κόλασης, ο οποίος δελεάζει τους
θνητούς με το δώρο της ανακάλυψης και των εφευρέσεων. Προειδοποίησε τον κόσμο ότι ο αριθμός αυτός
είναι απειλητικός και πως δεν πρέπει να τον κοιτάζουμε για πολλή ώρα, αλλά φυσικά
στο τέλος εξηγεί ότι αυτά που γράφει δεν πρέπει να λαμβάνονται και πολύ στα
σοβαρά!
![]() |
| Ο συμβολισμός του πρώτου αριθμού του Βηλφεγώρ με τον αριθμό π, ανάποδα! |
Ο Pickover ήταν εκείνος που όρισε και τους βαμπιρικούς αριθμούς, για τους οποίους είχαμε μιλήσει (σε παλιότερο Halloween) εδώ…
"Κακοί" πρώτοι αριθμοί
Ο πρώτος αριθμός του Βηλφεγώρ
ανήκει και στην κατηγορία των "κακών" πρώτων αριθμών, δηλαδή των πρώτων
αριθμών που περιέχουν το 666 στα ψηφία τους. Στο παρακάτω βίντεο από το κανάλι
Numberphile, παρουσιάζονται πολλοί από αυτούς τους... σατανικούς αριθμούς!
=========================================
Πηγές - Παραπομπές
Belphegor's prime: 1000000000000066600000000000001, by Dr. Cliff Pickover
Curioustem.org: Belphegor's prime
Googology Wiki: Belphegor's prime
Thesspress.gr|Θανάσης Κοπάδης: Παλίνδρομοι αριθμοί, αριθμοί βαμπίρ και ο πρώτος αριθμός της κολάσεως
Wikipedia.org|Παλινδρομικός αριθμός
Wolfram Mathworld|Belphegor's prime
YouTube|Numberphile: The most evil number















![Πρώτος καλείται ένας φυσικός αριθμός που διαιρείται μόνο με το 1 και τον εαυτό του. Για παράδειγμα οι αριθμοί 2, 3, 11, 17 είναι πρώτοι. Ένας αριθμός που δεν είναι πρώτος καλείται σύνθετος. Για παράδειγμα, ο αριθμός 9 είναι σύνθετος, αφού εκτός της μονάδας και του εαυτού του έχει διαιρέτη και το 3. Επειδή το 1 έχει μόνο έναν διαιρέτη (το 1, που είναι και ο εαυτός του), δεν είναι ούτε πρώτος ούτε σύνθετος αριθμός. Το 2 είναι ο μοναδικός άρτιος πρώτος, ενώ όλοι οι υπόλοιποι πρώτοι αριθμοί είναι περιττοί. Μπορούμε να βρούμε όλους τους πρώτους αριθμούς με ένα «κόσκινο»: Το κόσκινο του Ερατοσθένη κρατάει όλους τους σύνθετους αριθμούς και αφήνει να περάσουν όλοι οι πρώτοι. Για να βρούμε τους πρώτους αριθμούς, εργαζόμαστε ως εξής: 1. Αφήνουμε απέξω το 1 (είπαμε: δεν είναι ούτε πρώτος, ούτε σύνθετος). 2. Παίρνουμε τον επόμενο αριθμό (το 2). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του. 3. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 3). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν έχουν σβηστεί από πριν, ως πολλαπλάσια του 2). 4. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 5). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα έχουν σβηστεί από πριν). 5. Παίρνουμε τον επόμενο αριθμό που έμεινε (το 7). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν είναι σβησμένα από πριν). Με τον ίδιο τρόπο συνεχίζουμε για πάντα (αφού οι αριθμοί δεν τελειώνουν ποτέ)! Αν όμως θέλουμε να βρούμε τους πρώτους αριθμούς μέχρι το 120 (όπως κάνουμε τώρα), δεν χρειάζεται να προχωρήσουμε παραπάνω από το 7, αφού... ...οι αριθμοί που έχουν μείνει, (αυτοί που είναι μέσα στα κυκλάκια) είναι οι πρώτοι αριθμοί. Οι πρώτοι αριθμοί μέχρι το 120 δίνονται παρακάτω: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113. Γεννάται λοιπόν το ερώτημα: Πόσοι είναι οι πρώτοι αριθμοί; Την απάντηση έδωσε ο Ευκλείδης στα Στοιχεία (πρόταση ΙΧ.20) που αποδεικνύει ότι το πλήθος τους είναι άπειρο. Η απόδειξη παραφράζεται εδώ και είναι η εξής: Εξετάστε οποιαδήποτε πεπερασμένη λίστα πρώτων αριθμών \(p_1, p_2 , ..., p_n\). Θα αποδειχθεί, ότι υπάρχει τουλάχιστον ένας πρόσθετος πρώτος αριθμός, που δεν υπάρχει στη λίστα. Έστω \(P\) το γινόμενο όλων των πρώτων αριθμών στη λίστα, δηλ. \[P =p_1 \cdot p_2 \cdot ... \cdot p_n\]. Ας είναι \(q = P + 1\). Τότε ο \(q\) είναι είτε πρώτος ή όχι: • Εάν ο \(q\) είναι πρώτος, τότε υπάρχει τουλάχιστον ένας ακόμη πρώτος, που δεν περιλαμβάνεται στη λίστα. • Εάν ο \(q\) δεν είναι πρώτος, τότε κάποιος πρώτος παράγοντας \(p\) διαιρεί τον \(q\). Εάν αυτός ο παράγοντας \(p\) ήταν στη λίστα μας, τότε θα διαιρούσε το \(P\) (αφού το \(P\) είναι το γινόμενο κάθε αριθμού στη λίστα). Αλλά ο \(p\) διαιρεί επίσης το \(P + 1 = q\), όπως μόλις αναφέρθηκε. Εάν ο \(p\) διαιρεί το P και το q, τότε το p πρέπει επίσης να διαιρεί τη διαφορά των δύο αριθμών, που είναι \( (P + 1) - P = 1\). Δεδομένου ότι κανένας πρώτος αριθμός δεν διαιρεί το \(1\), ο \(p\) δεν μπορεί να είναι στη λίστα. Αυτό σημαίνει, ότι υπάρχει τουλάχιστον ένας ακόμη πρώτος αριθμός πέραν εκείνων της λίστας. Αυτό αποδεικνύει, ότι για κάθε πεπερασμένη λίστα πρώτων αριθμών, υπάρχει ένας πρώτος αριθμός, που δεν βρίσκεται στη λίστα. Άρα οι πρώτοι αριθμοί είναι άπειροι στο πλήθος. Η απόδειξη αυτή του Ευκλείδη θεωρείται από τις κομψότερες αποδείξεις στην ιστορία των μαθηματικών. Πρώτος καλείται ένας φυσικός αριθμός που διαιρείται μόνο με το 1 και τον εαυτό του. Για παράδειγμα οι αριθμοί 2, 3, 11, 17 είναι πρώτοι. Ένας αριθμός που δεν είναι πρώτος καλείται σύνθετος. Για παράδειγμα, ο αριθμός 9 είναι σύνθετος, αφού εκτός της μονάδας και του εαυτού του έχει διαιρέτη και το 3. Επειδή το 1 έχει μόνο έναν διαιρέτη (το 1, που είναι και ο εαυτός του), δεν είναι ούτε πρώτος ούτε σύνθετος αριθμός. Το 2 είναι ο μοναδικός άρτιος πρώτος, ενώ όλοι οι υπόλοιποι πρώτοι αριθμοί είναι περιττοί. Μπορούμε να βρούμε όλους τους πρώτους αριθμούς με ένα «κόσκινο»: Το κόσκινο του Ερατοσθένη κρατάει όλους τους σύνθετους αριθμούς και αφήνει να περάσουν όλοι οι πρώτοι. Για να βρούμε τους πρώτους αριθμούς, εργαζόμαστε ως εξής: 1. Αφήνουμε απέξω το 1 (είπαμε: δεν είναι ούτε πρώτος, ούτε σύνθετος). 2. Παίρνουμε τον επόμενο αριθμό (το 2). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του. 3. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 3). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν έχουν σβηστεί από πριν, ως πολλαπλάσια του 2). 4. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 5). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα έχουν σβηστεί από πριν). 5. Παίρνουμε τον επόμενο αριθμό που έμεινε (το 7). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν είναι σβησμένα από πριν). Με τον ίδιο τρόπο συνεχίζουμε για πάντα (αφού οι αριθμοί δεν τελειώνουν ποτέ)! Αν όμως θέλουμε να βρούμε τους πρώτους αριθμούς μέχρι το 120 (όπως κάνουμε τώρα), δεν χρειάζεται να προχωρήσουμε παραπάνω από το 7, αφού... ...οι αριθμοί που έχουν μείνει, (αυτοί που είναι μέσα στα κυκλάκια) είναι οι πρώτοι αριθμοί. Οι πρώτοι αριθμοί μέχρι το 120 δίνονται παρακάτω: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113. Γεννάται λοιπόν το ερώτημα: Πόσοι είναι οι πρώτοι αριθμοί; Την απάντηση έδωσε ο Ευκλείδης στα Στοιχεία (πρόταση ΙΧ.20) που αποδεικνύει ότι το πλήθος τους είναι άπειρο. Η απόδειξη παραφράζεται εδώ και είναι η εξής: Εξετάστε οποιαδήποτε πεπερασμένη λίστα πρώτων αριθμών \(p_1, p_2 , ..., p_n\). Θα αποδειχθεί, ότι υπάρχει τουλάχιστον ένας πρόσθετος πρώτος αριθμός, που δεν υπάρχει στη λίστα. Έστω \(P\) το γινόμενο όλων των πρώτων αριθμών στη λίστα, δηλ. \[P =p_1 \cdot p_2 \cdot ... \cdot p_n\]. Ας είναι \(q = P + 1\). Τότε ο \(q\) είναι είτε πρώτος ή όχι: • Εάν ο \(q\) είναι πρώτος, τότε υπάρχει τουλάχιστον ένας ακόμη πρώτος, που δεν περιλαμβάνεται στη λίστα. • Εάν ο \(q\) δεν είναι πρώτος, τότε κάποιος πρώτος παράγοντας \(p\) διαιρεί τον \(q\). Εάν αυτός ο παράγοντας \(p\) ήταν στη λίστα μας, τότε θα διαιρούσε το \(P\) (αφού το \(P\) είναι το γινόμενο κάθε αριθμού στη λίστα). Αλλά ο \(p\) διαιρεί επίσης το \(P + 1 = q\), όπως μόλις αναφέρθηκε. Εάν ο \(p\) διαιρεί το P και το q, τότε το p πρέπει επίσης να διαιρεί τη διαφορά των δύο αριθμών, που είναι \( (P + 1) - P = 1\). Δεδομένου ότι κανένας πρώτος αριθμός δεν διαιρεί το \(1\), ο \(p\) δεν μπορεί να είναι στη λίστα. Αυτό σημαίνει, ότι υπάρχει τουλάχιστον ένας ακόμη πρώτος αριθμός πέραν εκείνων της λίστας. Αυτό αποδεικνύει, ότι για κάθε πεπερασμένη λίστα πρώτων αριθμών, υπάρχει ένας πρώτος αριθμός, που δεν βρίσκεται στη λίστα. Άρα οι πρώτοι αριθμοί είναι άπειροι στο πλήθος. Η απόδειξη αυτή του Ευκλείδη θεωρείται από τις κομψότερες αποδείξεις στην ιστορία των μαθηματικών.](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh_POBYezeTX1QFcu2kdkg8WeD6GFxphFv3Rtswmw7ANo2PC0QnVvSIvN8pdN_PrGLMjKz9nPzRgPoCR8x7NJZXfsIff30zd-E8NpaKXXm6Ms6YFDcMKmnG8an1JyBtjpSH1J6Fg4OCCkvDBamkuNDLe_HOfFr9YVxngoltl2dYqY1O4xDwZg6nJIK8WG2I/w334-h400-rw/%CE%A4%CE%BF%20%CE%BA%CF%8C%CF%83%CE%BA%CE%B9%CE%BD%CE%BF%20%CF%84%CE%BF%CF%85%20%CE%95%CF%81%CE%B1%CF%84%CE%BF%CF%83%CE%B8%CE%AD%CE%BD%CE%B7.png)


