Εμφάνιση αναρτήσεων με ετικέτα μαθηματικά και τέχνη. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα μαθηματικά και τέχνη. Εμφάνιση όλων των αναρτήσεων

Δευτέρα 17 Φεβρουαρίου 2025

Τα Μαθηματικά στην Τέχνη: Η ταινία του Möbius

 

Αν είχαμε μια κενή σφαίρα με ένα μυρμήγκι στο εσωτερικό της, εύκολα θα αντιλαμβανόμασταν ότι η σφαίρα διαθέτει δύο διακεκριμένες όψεις. Ένα μυρμήγκι που περπατά στο εσωτερικό της σφαίρας δεν θα φτάσει ποτέ στην εξωτερική επιφάνεια. Επίσης, ένα μυρμήγκι που περπατά στο εξωτερικό της δεν πρόκειται να περάσει στο εσωτερικό.

Μια επίπεδη επιφάνεια που εκτείνεται ως το άπειρο προς όλες τις κατευθύνσεις διαθέτει, επίσης, δύο όψεις. Ένα μυρμήγκι που περπατά στη μία όψη δεν πρόκειται να βρεθεί ποτέ στην άλλη. Ακόμη και μια πεπερασμένη επίπεδη επιφάνεια, όπως μια σελίδα χαρτιού, θεωρείται δύο όψεων αν το μυρμήγκι δεν καταφέρει να "καβαλήσει" τις αιχμηρές ακμές του συνόρου της. Ομοίως, ένα κοίλο αντικείμενο τοροειδούς σχήματος σαν τον λουκουμά έχει δύο όψεις. 

Η πρώτη επιφάνεια μίας όψης που ανακαλύφθηκε και μελετήθηκε είναι η ταινία του Möbius.


Seth Bareiss (γεν. 1964) - "Forever Fish" (2005)


Τα βιβλία γράφουν... 

Η ταινία του Möbius είναι μια επιφάνεια με μία μόνο όψη και μόνο ένα σύνορο (συνοριακή γραμμή), ενώ δεν έχει προσανατολισμό.

M.C Escher (1898-1972) - "Möbius Strip I" (1961)
M.C Escher (1898-1972) - "Möbius Strip I" (1961)

M.C Escher (1898-1972) - "Möbius Strip II - Red Ants" (1963)


Για να κατασκευάσει κανείς μια ταινία Möbius, αρκεί απλώς να ενώσει τα δύο άκρα μιας μακριάς ανοιχτής λωρίδας, αφού πρώτα περιστρέψει το ένα από αυτά κατά 180º ως προς το άλλο. Σε μια τέτοια επιφάνεια, ένα μυρμήγκι μπορεί να περπατήσει από ένα σημείο σε ένα άλλο, χωρίς ποτέ να διασχίσει μια ακμή.


M.C Escher (1898-1972) - "Möbius Horsemen" (1946)

Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Möbius"
Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Möbius"

Joachim Eriksen (σύγχρονος καλλιτέχνης)
Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Intermediate Dimension"


Προσπαθήστε να χρωματίσετε μια ταινία Möbius. Είναι αδύνατο να βάψετε τη μια πλευρά κόκκινη και την άλλη πράσινη, καθώς διαθέτει μια μόνο όψη. Αυτό σημαίνει ότι αν πάρουμε δύο οποιαδήποτε σημεία πάνω στην ταινία του Möbius, μπορούμε να σχεδιάσουμε μια συνεχή γραμμή, χωρίς ποτέ να διασχίσουμε ένα σύνορο (ακμή).  

Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Möbius"
Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Über die Einfachheit der Dinge"


Η ταινία του Μέμπιους είναι μια μη προσανατολιζόμενη επιφάνεια. Παρατηρήστε ότι ο κάβουρας που κινείται πάνω σε αυτήν αντιστρέφεται (η μεγάλη του δαγκάνα από αριστερά πάει δεξιά) κάθε φορά που κάνει έναν πλήρη κύκλο. Αυτό δεν θα συνέβαινε αν ο κάβουρας κινούταν πάνω σε έναν τόρο.
Η ταινία του Μέμπιους είναι μια μη προσανατολιζόμενη επιφάνεια. Παρατηρήστε ότι ο κάβουρας που κινείται πάνω σε αυτήν αντιστρέφεται (η μεγάλη του δαγκάνα από αριστερά πάει δεξιά) κάθε φορά που κάνει έναν πλήρη κύκλο. Αυτό δεν θα συνέβαινε αν ο κάβουρας κινούταν πάνω σε έναν τόρο.


Η ταινία του Möbius με τις ενδιαφέρουσες ιδιότητές της έχει αποτελέσει -και συνεχίζει να αποτελεί- έμπνευση για πολλούς καλλιτέχνες...


"Möbius" - Γλυπτό των Jennifer Macklem & Kip Jones  που διακοσμεί το εξωτερικό της δημόσιας βιβλιοθήκης της Κελόουνα στον Καναδά.
"Möbius" - Γλυπτό των Jennifer Macklem & Kip Jones 
που διακοσμεί το εξωτερικό της δημόσιας βιβλιοθήκης της Κελόουνα στον Καναδά.


"Möbius Ship" (2006) - Γλυπτό του Tim Hawkinson που παριστάνει τον αέναο κύκλο της ταινίας του Möbius. (Μουσείο Τέχνης της Ινδιανάπολης)
"Möbius Ship" (2006) - Γλυπτό του Tim Hawkinson
που παριστάνει τον αέναο κύκλο της ταινίας του Möbius.
(Μουσείο Τέχνης της Ινδιανάπολης)


Joachim Eriksen (σύγχρονος καλλιτέχνης)
Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Simplicity (Möbius band)", γλυπτό από αλάβαστρο



Η ανακάλυψή της αποδίδεται στους Γερμανούς μαθηματικούς August Ferdinand Möbius και Johann Benedict Listing το 19ο αιώνα, αν και μια δομή παρόμοια με την ταινία του Möbius φαίνεται στα ρωμαϊκά μωσαϊκά που χρονολογούνται γύρω στο 200-250 μ.Χ.  


Αρχαίο Ρωμαϊκό μωσαϊκό που απεικονίζει μια δομή παρόμοια με την ταινία του Μέμπιους
Αρχαίο ρωμαϊκό μωσαϊκό, όπου απεικονίζεται μια δομή παρόμοια με την ταινία του Möbius  


Πηγές:

Πέμπτη 26 Σεπτεμβρίου 2024

Τα κρυμμένα μαθηματικά στην "Έναστρη Νύχτα" του van Gogh

 

Η «Έναστρη Νύχτα» του Vincent van Gogh είναι μια ελαιογραφία σε καμβά η οποία απεικονίζει μια θέα λίγο πριν την ανατολή του ηλίου από το ανατολικό παράθυρο του δωματίου του ασύλου όπου διέμενε ο καλλιτέχνης στο Saint-Rémy-de-Provence στη νότια Γαλλία. Ο βαν Γκογκ είχε  αυτοβούλως ζητήσει τον εγκλεισμό του στο άσυλο μετά τον αυτο-ακρωτηριασμό του αριστερού του αυτιού, τον Δεκέμβριο του 1888.


Τα κρυμμένα μαθηματικά στην "Έναστρη Νύχτα" του van Gogh
Εκτιθέμενη από το 1941 στο Μουσείο Μοντέρνας Τέχνης της Νέας Υόρκης, η «Έναστρη Νύχτα» είναι ένα εξαιρετικά δημοφιλές έργο τέχνης.


 

Το αστραφτερό φως των αστεριών και τα στροβιλιζόμενα σύννεφα στον πίνακα αυτό, πιστευόταν παλιότερα ότι αντανακλούν την ταραχώδη ψυχική κατάσταση του καλλιτέχνη όταν ζωγράφιζε το έργο την άνοιξη του 1889. Πλέον, μελέτες από φυσικούς επιστήμονες έχουν δείξει ότι ο καλλιτέχνης είχε μια βαθιά, διαισθητική κατανόηση της μαθηματικής δομής της τυρβώδους ροής.

 

Τι είναι η τυρβώδης ροή;

Η τυρβώδης ροή είναι ένα συγκεκριμένο είδος ροής των ρευστών που μέσα της σχηματίζονται στρόβιλοι. Ως συνηθισμένο φυσικό φαινόμενο που παρατηρείται στα ρευστά –κινούμενο νερό, ωκεάνια ρεύματα, ροή αίματος, ατμοσφαιρικό οριακό στρώμα, διογκούμενα σύννεφα καταιγίδας,  νέφη καπνού και καπνός από τσιγάρο– η τυρβώδης ροή είναι χαοτική, καθώς σχηματίζονται μικρότεροι στρόβιλοι μέσα σε μεγαλύτερους. Είναι κάτι που αποτελεί καθημερινή μας εμπειρία και πρόκληση αξεπέραστη για τους μαθηματικούς φυσικούς.


Μπορεί να φαίνεται τυχαίο στον περιστασιακό παρατηρητή, ωστόσο οι «αναταράξεις» ακολουθούν ένα διαδοχικό μοτίβο που μπορεί να μελετηθεί και, τουλάχιστον εν μέρει, να εξηγηθεί χρησιμοποιώντας μαθηματικές εξισώσεις.

Μπορεί να φαίνεται τυχαίο στον περιστασιακό παρατηρητή, ωστόσο οι «αναταράξεις» ακολουθούν ένα διαδοχικό μοτίβο που μπορεί να μελετηθεί και, τουλάχιστον εν μέρει, να εξηγηθεί χρησιμοποιώντας μαθηματικές εξισώσεις.



Τα αστέρια του πίνακα, ο πλανήτης Αφροδίτη και το άστρο V838 Mon

«Μέσα από το παράθυρο με τα σιδερένια κάγκελα» γράφει ο Βαν Γκογκ στον αδελφό του Τεό, τον Μάιο του 1889, «μπορώ να διακρίνω ένα τετράγωνο κομμάτι γης με σιτάρι… πάνω από το οποίο, το πρωί, βλέπω τον ήλιο να ανατέλλει σε όλο του το μεγαλείο».

H «Έναστρη Νύχτα» είναι το μόνο νυχτερινό έργο στη σειρά πινάκων με τη θέα από το παράθυρο του υπνοδωματίου του. Στις αρχές Ιουνίου, έγραψε στον Τεό: «Σήμερα το πρωί είδα το τοπίο από το παράθυρό μου για μεγάλο χρονικό διάστημα πριν από την ανατολή με τίποτα άλλο εκτός από το πρωινό άστρο, το οποίο φάνταζε πολύ μεγάλο».

Οι ερευνητές έχουν καταλήξει στο συμπέρασμα ότι η Αφροδίτη ήταν πράγματι ορατή την αυγή, στην Προβηγκία, την άνοιξη του 1889 και την εποχή εκείνη ήταν κοντά στο φωτεινότερο δυνατό της. Έτσι, το πιο λαμπρό «αστέρι» στον πίνακα, δεξιά από το κυπαρίσσι, είναι στην πραγματικότητα η Αφροδίτη.


άστρο V838 Mon

Μια φωτογραφία από το διαστημικό τηλεσκόπιο Hubble που δημοσιεύθηκε το 2004 έδειχνε ένα μακρινό άστρο, το V838 Mon στον αστερισμό Μονόκερως, να μοιάζει με τα άστρα της «Έναστρης Νύχτας» όπου ο Βαν Γκογκ φαντάζεται το φως τους να στροβιλίζεται. Στο άστρο V838 Mon, που βρίσκεται 20.000 έτη φωτός μακριά από τη Γη, οι φωτεινοί στροβιλισμοί οφείλονται στην σκόνη και στην τυρβώδη ροή των αερίων γύρω από αυτό.




Το 2006, οι ερευνητές J.L. Aragón, Gerardo G. Naumis, M. Bai, M. Torres και P.K. Maini, μετά την δημοσίευση της φωτογραφίας του Hubble, εξέτασαν την μαθηματική συσχέτιση των μοτίβων της τυρβώδους ροής των ρευστών, με τους στροβιλισμούς που απεικόνιζε στους πίνακές του ο Βαν Γκογκ. Σε άρθρο τους με τίτλο «Turbulent luminance in impassioned van Gogh paintings», έδειξαν ότι η συνάρτηση κατανομής της πιθανότητας των στροβιλισμών του φωτός σε ορισμένους πίνακες του μεταϊμπρεσιονιστή ζωγράφου, μοιάζει με την αντίστοιχη κατανομή των μεταβολών της ταχύτητας κατά την τυρβώδη ροή ρευστού, όπως προβλέπει η στατιστική θεωρία του Kolmogorov (που περιγράφει έστω και εν μέρει τη δυναμική των ρευστών). Τη δεκαετία του 1940, ο Σοβιετικός μαθηματικός Αντρέι Κολμογκόροφ περιέγραψε μια μαθηματική σχέση μεταξύ των διακυμάνσεων της ταχύτητας μιας ροής και του ρυθμού με τον οποίο διαχέεται η ενέργειά της, αναπτύσσοντας τη θεωρία της τύρβης του Kolmogorov

Το καλλιτεχνικό ενδιαφέρον εδώ είναι ότι η στατιστική υπογραφή της δυναμικής των ρευστών ανιχνεύεται μόνο στους πίνακες που συνέθεσε ο βαν Γκογκ στην ψυχολογικά διαταραγμένη περίοδο της ζωής του και όχι όταν η ζωή του κυλούσε ήρεμα.







Ο van Gogh και οι στροβιλισμοί του πάλι στο προσκήνιο

Φέτος, μια νέα ανάλυση του πίνακα από επιστήμονες από την Κίνα και τη Γαλλία «αποκαλύπτει» τα κρυμμένα μαθηματικά στην «Έναστρη Νύχτα».

«Φανταστείτε ότι στέκεστε σε μια γέφυρα και παρακολουθείτε το ποτάμι να κυλάει. Θα δείτε στροβιλισμούς στην επιφάνεια, και αυτοί οι στροβιλισμοί δεν είναι τυχαίοι. Εντάσσονται σε συγκεκριμένα μοτίβα και αυτά τα είδη μοτίβων μπορούν να προβλεφθούν από φυσικούς νόμους», δήλωσε ο Γιονγκ Τσιάνγκ Χουάνγκ,  επικεφαλής συγγραφέας της μελέτης η οποία δημοσιεύθηκε στο επιστημονικό περιοδικό Physics of Fluids. Ο Huang είναι ερευνητής στο State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences στο Πανεπιστήμιο Xiamen στη νοτιοανατολική Κίνα.


κλίμακα των 14 βασικών περιδινούμενων σχηματισμών

Με τη χρήση ενός ψηφιακού αντιγράφου του πίνακα, ο Χουάνγκ και οι συνάδελφοί του εξέτασαν την κλίμακα των 14 βασικών περιδινούμενων σχηματισμών για να κατανοήσουν αν συμμορφώνονταν με θεωρίες της φυσικής που περιγράφουν τη μεταφορά ενέργειας από μεγάλης σε μικρής κλίμακας περιδινήσεων καθώς συγκρούονται και αλληλεπιδρούν μεταξύ τους.



Ο ουρανός του πίνακα, καθώς είναι φιλοτεχνημένος και δεν κινείται πραγματικά, δεν μπορεί να μετρηθεί άμεσα, οπότε ο Χουάνγκ και οι συνάδελφοί του υπολόγισαν με ακρίβεια τις πινελιές, συγκρίνοντας το μέγεθός τους με μαθηματικές κλίμακες της τυρβώδους ροής.


Για να μετρήσουν τη φυσική κίνηση, χρησιμοποίησαν τη φωτεινότητα των διαφορετικών χρωμάτων που χρησιμοποίησε ο καλλιτέχνης.

Για να μετρήσουν τη φυσική κίνηση, χρησιμοποίησαν τη φωτεινότητα των διαφορετικών χρωμάτων που χρησιμοποίησε ο καλλιτέχνης.



Έτσι, ανακάλυψαν πως τα μεγέθη των 14 στροβίλων στην «Έναστρη Νύχτα» και η σχετική απόσταση και έντασή τους ακολουθούν τη θεωρία της τύρβης του Kolmogorov. 

Σύμφωνα με τον Χουάνγκ και την επιστημονική ομάδα του, ο πίνακας, σε μικρότερη κλίμακα, αναμειγνύεται με κάποιες δίνες και στροβιλισμούς υποβάθρου με τρόπο που προβλέπεται από τη θεωρία της τύρβης, ακολουθώντας ένα στατιστικό μοτίβο γνωστό ως κλίμακα του Batchelor (Batchelor’s scaling), που καθορίστηκε από τον George Batchelor και περιγράφει μαθηματικά τον τρόπο με τον οποίο τα μικρά σωματίδια, όπως τα παρασυρόμενα φύκια στον ωκεανό ή τα κομμάτια σκόνης στον άνεμο, αναμειγνύονται παθητικά από την τυρβώδη ροή. 

 

 

Άγνοια των μοντέλων – Μελέτη της φύσης

«Φυσικά», είπε ο Χουάνγκ, «ο βαν Γκογκ δεν θα γνώριζε τέτοιες θεωρίες ή εξισώσεις, αλλά πιθανότατα πέρασε πολύ χρόνο παρατηρώντας την τύρβη στη φύση… Νομίζω ότι αυτή η φυσική σχέση πρέπει να είναι ενσωματωμένη στο μυαλό του, γι’ αυτό όταν έκανε αυτόν τον διάσημο πίνακα "Έναστρη Νύχτα", μιμείται την πραγματική τυρβώδη ροή».


Van Gogh alive Athens
Φράση του καλλιτέχνη... Φωτογραφία αρχείου από την έκθεση "Van Gogh Alive" τον Μάρτιο του 2018 στην Αθήνα



Ο Χουάνγκ είπε ότι οι επιστήμονες προσπαθούν εδώ και πολύ καιρό να περιγράψουν την τυρβώδη ροή στη δυναμική των ρευστών με τρόπο που θα τους επιτρέπει να προβλέψουν το φαινόμενο. Μια διεξοδική κατανόηση της τυρβώδους ροής θα βοηθούσε στην πρόγνωση του καιρού, στις αναταράξεις των πτήσεων και σε πολλές άλλες διαδικασίες, ενώ μια πλήρης εξήγηση παραμένει ένα κυρίαρχο μυστήριο της φυσικής.






Πηγές - Παραπομπές

CNN: Turbulentskies of Vincent Van Gogh’s ‘The Starry Night’ align with a scientific theory,study finds

Phys.uoa.gr|Τύρβη

Physics4u

Physicsgg.me

ScienceDirect

TED-Ed|The unexpected math behind van Gogh's "Starry Night"

Turbulent Luminance in Impassioned van Gogh Paintings

University of Thessaly|Εισαγωγή σε Περιβαλλοντικές Ροές-Υπολογιστική Ρευστομηχανική και Τύρβη

Wikipedia.org


Τετάρτη 11 Σεπτεμβρίου 2024

Καλή σχολική χρονιά!


1ο Νικηφόρειο Γενικό Λύκειο Καλύμνου
Έργα μαθηματικής τέχνης από μαθητές του 1ου Γενικού Λυκείου Καλύμνου 


 “Τι είναι λοιπόν τα Μαθηματικά; Φαίνεται ότι έχουμε τρεις επιλογές:

– Τα Μαθηματικά είναι η ανθρωπιστική επιστήμη που υμνεί την αιώνια λογική.

– Είναι η φυσική επιστήμη που μελετά το φαινόμενο λογική.

– Είναι η τέχνη που πλάθει μορφές αιθέριας ομορφιάς από την πρώτη ύλη που ονομάζεται λογική.

Είναι όλα αυτά και άλλα. Πάνω απ’ όλα, όμως, μπορώ να σας διαβεβαιώσω ότι τα Μαθηματικά είναι ευχαρίστηση.”

– W. T. TUTTE


Καλή και δημιουργική σχολική χρονιά!!!


Δευτέρα 8 Απριλίου 2024

"Αναμνήσεις συμμετρίας"

 

Το βιβλίο "Αναμνήσεις Συμμετρίας" του μαθηματικού Ανδρέα Λύκου είναι «μία μυθιστορηματική περιήγηση στο έργο του χαράκτη Μ. Κ. Έσερ», όπως το χαρακτηρίζει ο ίδιος ο συγγραφέας. Ο Ανδρέας Λύκος κατάφερε να ισορροπήσει με αξιοθαύμαστο τρόπο στην αφήγηση της ιστορίας του διαφορετικούς και σύνθετους κόσμους: την πολυδιάστατη ομορφιά της τέχνης του Ολλανδού χαράκτη Έσερ, τη μαθηματική επιστήμη και την αναζήτηση της συμμετρίας, με την παλαιότερη από τις ανθρώπινες περιπέτειες, εκείνη του έρωτα και της ένωσης των ανθρώπων.


Βασικοί ήρωες αυτού του επιστολογραφικού μυθιστορήματος, με τις υποκειμενικές αφηγήσεις των ηρώων, είναι η Ραφαέλα, φοιτήτρια Ιστορίας της Τέχνης, και ο Θωμάς, διδακτορικός φοιτητής μαθηματικών, οι οποίοι παρατηρούν, ο ένας στη Ρώμη και ο άλλος στη Χάγη, το ίδιο έργο του χαράκτη Μ.Κ. Έσερ, την περίφημη λιθογραφία «Πινακοθήκη» (1956). Ο πίνακας που κοιτούν γοητευμένοι οι δύο ήρωες σε διαφορετικές τοποθεσίες αποτελεί και το όχημα που θα τους μεταφέρει, με απρόβλεπτο τρόπο, στην ίδια πόλη. Το Ατράνι, μια μικρή ιταλική πόλη, που έχει απεικονίσει πολλές φορές ο Έσερ στα χαρακτικά του, θα γίνει ο τόπος στον οποίο θα βιώσουν ένα πρωτόγνωρο συναίσθημα, εκείνο της βιωματικής προσέγγισης ενός έργου τέχνης. Εκεί θα γνωρίσουν τους "ανέφικτους κόσμους" του, καθώς και τα έργα του που διέπονται από τους κανόνες της συμμετρίας. Οι ήρωες του βιβλίου περπατούν δίπλα στους «Καταρράκτες», τους «Βυθισμένους Καθεδρικούς ναούς» και στις αδύνατες κατασκευές του χαράκτη, προσπερνώντας παράξενα συμμετρικά πτηνά, σαύρες ή περίτεχνα γεωμετρικά σχήματα. Ξεναγός τους θα είναι ο ίδιος ο χαράκτης. 



M.C. Escher "Πινακοθήκη"
Το έργο «Πινακοθήκη» (1956) του Μ.Κ. Έσερ


Πώς, όμως, μία ιστορία στα Γιάννενα του δευτέρου παγκοσμίου πολέμου και ένας έλληνας μαθηματικός του 20ού αιώνα θα επηρεάσουν τη μετέπειτα ζωή τους; Μία επιδέξια ακροβασία ανάμεσα στο υπαρκτό και το νοητό, μία ευτυχισμένη συνάντηση του ορθολογισμού με το συναίσθημα, μία ερωτική περιπέτεια όπου πρωταγωνιστούν τα μαθηματικά και η τέχνη.


Αναμνήσεις συμμετρίας
Το βιβλίο από τις Εκδόσεις Γαβριηλίδης



Μπορείτε να διαβάσετε το βιβλίο σε ηλεκτρονική μορφή, καθώς διατίθεται δωρεάν εδώ


Δευτέρα 11 Σεπτεμβρίου 2023

Καλή σχολική χρονιά!

 

Το blog "εις το άπειρον" από φέτος θα βρίσκεται στην Κάλυμνο... Ευχόμαστε σε μαθητές, γονείς και εκπαιδευτικούς καλή σχολική χρονιά, με υγεία, δύναμη και όρεξη για μάθηση!


Χρυσή τομή Νικηφόρειο Λύκειο
Έργο μαθητών που απεικονίζει τη χρυσή έλικα στο 1ο Νικηφόρειο Γενικό Λύκειο Καλύμνου

Πέμπτη 29 Ιουνίου 2023

"Αλγεβρικές επιφάνειες"... ψηφιακά έργα μαθηματικής τέχνης!

 

Ο Γερμανός Torolf Sauermann, χρησιμοποιώντας μαθηματικά και το λογισμικό Surfer, δημιουργεί μοναδικά ψηφιακά έργα μαθηματικής τέχνης. Aποκαλεί τη συλλογή "Αλγεβρικές Επιφάνειες", αφού οι επιφάνειες που απεικονίζονται, παριστάνονται από αλγεβρικές εξισώσεις στον τρισδιάστατο χώρο. 


Sauermann Surface 2013
"Sauermann Surface 2013"

Kubismus Sauermann 2011
"Kubismus Sauermann 2011"

2x Sphere
"2x Sphere"

3x Sphere
"3x Sphere"

4x Sphere
"4x Sphere"

6x Sphere
"6x Sphere"

Sauermann Nonic Surface 2013
"Sauermann Nonic Surface 2013"

Sunflower Sauermann 2008
"Sunflower Sauermann 2008"

Cube Surface
"Cube Surface"

d=10 Demo Sauermann 2013
"d=10 Demo Sauermann 2013"

Fresnel Wave Surface
"Fresnel Wave Surface"



Πηγή εικόνων: Imaginary.org


Τρίτη 21 Μαρτίου 2023

"Τ' ανώτερα μαθηματικά μου..." (για την Παγκόσμια Ημέρα Ποίησης)


Harsh Malik - "Ornate Nautilus Shell". Τ' ΑΝΩΤΕΡΑ ΜΑΘΗΜΑΤΙΚΑ ΜΟΥ τα έκανα στο Σχολείο της θάλασσας.
Harsh Malik - "Ornate Nautilus Shell"

 


Τ' ΑΝΩΤΕΡΑ ΜΑΘΗΜΑΤΙΚΑ ΜΟΥ τα έκανα στο Σχολείο της θάλασσας. Ιδού και μερικές πράξεις για παράδειγμα:


(1) Εάν αποσυνθέσεις την Ελλάδα, στο τέλος θα δεις να σου απομένουν μια ελιά, ένα αμπέλι κι ένα καράβι. Που σημαίνει: με άλλα τόσα την ξαναφτιάχνεις.


(2) Το γινόμενο των μυριστικών χόρτων επί την αθωότητα δίνει πάντοτε το σχήμα κάποιου Ιησού Χριστού.


(3) Η ευτυχία είναι η ορθή σχέση ανάμεσα στις πράξεις (σχήματα) και στα αισθήματα (χρώματα). Η ζωή μας κόβεται, και οφείλει να κόβεται, στα μέτρα που έκοψε τα χρωματιστά χαρτιά του ο Matisse.


(4) Όπου υπάρχουν συκιές υπάρχει Ελλάδα. Όπου προεξέχει το βουνό απ' τη λέξη του υπάρχει ποιητής. Η ηδονή δεν είναι αφαιρετέα.


(5) Ένα δειλινό στο Αιγαίο περιλαμβάνει τη χαρά και τη λύπη σε τόσο ίσες δόσεις που δεν μένει στο τέλος παρά η αλήθεια.


(6) Κάθε πρόοδος στο ηθικό επίπεδο δεν μπορεί παρά να είναι αντιστρόφως ανάλογη προς την ικανότητα που έχουν η δύναμη κι ο αριθμός να καθορίζουν τα πεπρωμένα μας.


(7) Ένας "Αναχωρητής" για τους μισούς είναι, αναγκαστικά, για τους άλλους μισούς, ένας "Επερχόμενος".




Οδυσσέας Ελύτης, Ο Μικρός Ναυτίλος, εκδ. ΙΚΑΡΟΣ, Αθήνα 1985 (Από την ενότητα ΜΥΡΙΣΑΙ ΤΟ ΑΡΙΣΤΟΝ).


Κυριακή 22 Ιανουαρίου 2023

Μαθηματικά σε γλώσσα προγραμματισμού BASIC-256 παράγουν έργα τέχνης


O Joel Kahn χρησιμοποιεί τη γλώσσα προγραμματισμού BASIC-256 ως εργαλείο, σε συνδυασμό με τα Μαθηματικά (κυρίως Γεωμετρία, Αναλυτική Γεωμετρία, Άλγεβρα, αλλά και Τριγωνομετρία) και παράγει ψηφιακά έργα τέχνης.


"Deceptive Crescents"

"Overloop"

"Garden of Sierpinski"

"Embedded Gold"

"Galactic Mountain"

"Glow and Converge"

"Hourglass"

"Pyramid Silhouette"

"Metallic Core"

"Red Green Blue Sharpness"

"Seashore"

"Complex Diagonal Symmetry"

"Diagonal Eggs"

"Knots in Hyperspace"

"Rainbow Mountains"

"Sharp Crystals"



Πηγή εικόνων: Imaginary.org