Το origami είναι η τέχνη του διπλώματος χαρτιού, αλλά μέχρι πόσες φορές μπορείς να διπλώσεις ένα χαρτί στη μέση; (Image credit: Aliaksandr Barysenka / EyeEm via Getty Images) |
Μια κόλλα χαρτί, σαν τις φωτοτυπίες που δίνω στους μαθητές μου, μπορεί να διπλωθεί στη μέση οριακά μέχρι και 7 φορές. Μπορείτε να το διαπιστώσετε εύκολα και μόνοι σας, διπλώνοντας μια κόλλα Α4. Είναι αδύνατο να διπλωθεί το χαρτί πάνω από 7 φορές! Αυτό οφείλεται στο γεγονός ότι με κάθε δίπλωση, το πάχος του χαρτιού διπλασιάζεται. Αυτού του είδους η αύξηση που γίνεται στο πάχος του χαρτιού λέγεται εκθετική αύξηση.
Πόσες φορές πιστεύετε ότι θα χρειαστεί να διπλώσετε ένα τέτοιο χαρτί (οσοδήποτε μεγάλο) ώστε το χαρτί αυτό διπλωμένο να έχει πάχος όσο η απόσταση της Γης από τη Σελήνη;
Η απάντηση είναι παράδοξη και αντιβαίνει στη λογική μας: είναι μόλις... 39 φορές! Αλλά οι αριθμοί λένε την αλήθεια.
Σκεφτείτε ότι αν μπορούσατε να διπλώσετε ένα χαρτί πάχους 0,8 χιλιοστών 17 φορές, το χαρτί αυτό διπλωμένο θα είχε πάχος \(0,0008 \cdot 2^{17}=104,9\) μέτρα, δηλαδή θα έφτανε το ύψος ενός ουρανοξύστη.
Με 20 αναδιπλώσεις έχουμε πάχος 838,86 μέτρα.
Με 30 αναδιπλώσεις έχουμε πάχος σχεδόν 100 χιλιόμετρα και φτάνουμε στη θερμόσφαιρα.
Με 39 αναδιπλώσεις έχουμε πάχος περίπου 439.804, ξεπερνώντας τη Σελήνη.
Με 48 αναδιπλώσεις, θεωρητικά πάντα, φτάνουμε στον Ήλιο!
Αν είμαστε αρκετά εργατικοί και... μερακλήδες και διπλώσουμε το χαρτί 85 φορές, έχουμε φτάσει στο γαλαξία της Ανδρομέδας, που απέχει από τη Γη περίπου 2,5 εκατομμύρια έτη φωτός!
Δείτε στο παρακάτω βίντεο από το κανάλι TED-Ed, ότι διπλώνοντας ένα ιδιαίτερα λεπτό χαρτί, πάχους 0,01 χιλιοστών 40 φορές, φτάνουμε έναν δορυφόρο GPS. Αν το διπλώσουμε 45 φορές φτάνουμε στη Σελήνη, ενώ αν το διπλώσουμε άλλη μία φορά, επιστρέφουμε πίσω στη Γη...
Ας είμαστε, όμως, ρεαλιστές. Δεν έχουμε τόσο πολύ χαρτί για να διπλώσουμε. Το 2002, λοιπόν, μια μαθήτρια Λυκείου από την Καλιφόρνια, η Britney Gallivan, θέλησε να διπλώσει ένα χαρτί πάνω από 7 φορές, καταρρίπτοντας το "μύθο". Το κατάφερε, διπλώνοντας χαρτί υγείας μήκους 1.200 μέτρων 12 φορές, πάντα προς την ίδια κατεύθυνση, κατακτώντας έτσι το ρεκόρ Guinness. Μάλιστα υπολόγισε τις διαστάσεις που πρέπει να έχει αρχικά το χαρτί, ώστε να μπορεί να διπλωθεί \(n\) φορές. Σύμφωνα με την Gallivan, είναι:
όπου t το πάχος του χαρτιού, n το πλήθος των διπλώσεων, L το μήκος του χαρτιού και W το πλάτος του. |
Το 2005, με το συγκεκριμένο ζήτημα ασχολήθηκε και η γνωστή εκπομπή Mythbusters, διπλώνοντας χαρτί επιφάνειας όσο ένα γήπεδο ποδοσφαίρου 11 φορές!
Το 2011, μια ομάδα μαθητών στο Southborough της Μασαχουσέτης, υπό την επίβλεψη του καθηγητή τους, Mark Tanton, δίπλωσαν χαρτί υγείας σχεδόν 4 χιλιομέτρων 13 φορές, σε έναν τεράστιο διάδρομο 250 μέτρων στο MIT. Στο διάδρομο αυτό, αφού δεν είχαν προβλήματα με ανέμους, τα κατάφεραν μετά από 4 περίπου ώρες. Αν και κατέρριψαν το προηγούμενο ρεκόρ, δεν έχουν καταγραφεί στο βιβλίο Guinness. Φαίνεται πως δεν ενθαρρύνεται η προσπάθεια κατάρριψης ρεκόρ διπλώματος χαρτιού για οικολογικούς λόγους!