Εμφάνιση αναρτήσεων με ετικέτα επιφάνειες. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα επιφάνειες. Εμφάνιση όλων των αναρτήσεων

Πέμπτη 29 Ιουνίου 2023

"Αλγεβρικές επιφάνειες"... ψηφιακά έργα μαθηματικής τέχνης!

 

Ο Γερμανός Torolf Sauermann, χρησιμοποιώντας μαθηματικά και το λογισμικό Surfer, δημιουργεί μοναδικά ψηφιακά έργα μαθηματικής τέχνης. Aποκαλεί τη συλλογή "Αλγεβρικές Επιφάνειες", αφού οι επιφάνειες που απεικονίζονται, παριστάνονται από αλγεβρικές εξισώσεις στον τρισδιάστατο χώρο. 


Sauermann Surface 2013
"Sauermann Surface 2013"

Kubismus Sauermann 2011
"Kubismus Sauermann 2011"

2x Sphere
"2x Sphere"

3x Sphere
"3x Sphere"

4x Sphere
"4x Sphere"

6x Sphere
"6x Sphere"

Sauermann Nonic Surface 2013
"Sauermann Nonic Surface 2013"

Sunflower Sauermann 2008
"Sunflower Sauermann 2008"

Cube Surface
"Cube Surface"

d=10 Demo Sauermann 2013
"d=10 Demo Sauermann 2013"

Fresnel Wave Surface
"Fresnel Wave Surface"



Πηγή εικόνων: Imaginary.org


Δευτέρα 4 Ιανουαρίου 2021

Τα Μαθηματικά στην Τέχνη: Υπερβολικό παραβολοειδές


Τα βιβλία γράφουν...

Το υπερβολικό παραβολοειδές είναι μια τετραγωνική επιφάνεια, δηλαδή επιφάνεια 2ου βαθμού. 
Η επιφάνεια του υπερβολικού παραβολοειδούς είναι απεριόριστη και παράγεται από την κίνηση ευθείας, είναι επομένως ευθειογενής επιφάνεια.
Το υπερβολικό παραβολοειδές έχει δύο επίπεδα συμμετρίας, τα οποία είναι κάθετα μεταξύ τους. Η τομή των δύο αυτών επιπέδων είναι ο άξονας συμμετρίας της επιφάνειας, ο οποίος τέμνει την επιφάνεια σε ένα μοναδικό σημείο, που λέγεται κορυφή του υπερβολικού παραβολοειδούς.
Τα επίπεδα συμμετρίας τέμνουν την επιφάνεια σε δύο παραβολές, που έχουν κοινό σημείο την κορυφή της επιφάνειας.
Κάθε επίπεδο παράλληλο σε ένα από τα επίπεδα συμμετρίας επίσης τέμνει την επιφάνεια κατά παραβολή.
Κάθε επίπεδο κάθετο και στα δύο επίπεδα συμμετρίας τέμνει την επιφάνεια σε υπερβολή, εκτός από το επίπεδο που διέρχεται από την κορυφή της επιφάνειας, το οποίο την τέμνει σε δύο ευθείες.
Τα παραπάνω δικαιολογούν και το όνομα της επιφάνειας, καθώς και το ότι το υπερβολικό παραβολοειδές δεν είναι φραγμένο.

Σύγχρονοι ζωγράφοι, γραφίστες, αλλά και γλύπτες έχουν χρησιμοποιήσει το υπερβολικό παραβολοειδές στα έργα τέχνης τους.

Don Barrett (Σύγχρονος γραφίστας) - "Back In The Saddle Again" 

Don Barrett (Σύγχρονος γραφίστας) - "Gravity Well"

Aaron Lee (Σύγχρονος ζωγράφος) - "Hyperbolic Paraboloid" 

Joe Orlando (γεν. 1949) - "Υπερβολική Παραβολοειδής Στήλη" (γλυπτό που ολοκληρώθηκε το 1985)


Η γεωμετρία του υπερβολικού παραβολοειδούς έχει χρησιμοποιηθεί πολύ συχνά στη σύγχρονη αρχιτεκτονική, αποτελώντας έμπνευση για τη δημιουργία ξεχωριστών κτηρίων. Μετά τη σφαίρα και τον κύλινδρο, είναι η πλέον εφαρμοσμένη επιφάνεια 2ου βαθμού στην αρχιτεκτονική, δημιουργώντας εντυπωσιακές καμπυλωτές φόρμες.

Arseniusz Romanowicz & Piotr Szymaniak - Σιδηροδρομικός Σταθμός Warszawa Ochota, Βαρσοβία
(ολοκληρώθηκε το 1962)

Le Corbusier - Ι. Ξενάκης, Philips Pavilion, Διεθνής Έκθεση Βρυξελλών, 1958

Le Corbusier - Ι. Ξενάκης, Philips Pavilion, Διεθνής Έκθεση Βρυξελλών

Santiago Calatrava (γεν. 1951) - Ολυμπιακό Στάδιο Αθηνών, στέγαστρο του ΟΑΚΑ (2004)

Santiago Calatrava (γεν. 1951) - Ολυμπιακό Στάδιο Αθηνών, στέγαστρο του ΟΑΚΑ (2004)

Félix Candela - Restaurante "Los Manantiales", Xochimilco, México
(σχεδιάστηκε το 1958)

Félix Candela - L'Oceanographic, Valencia
(σχεδιάστηκε το 1997)


.*.~.*.~.*.~.*.~.*.~.*

"Άρχισα να ενδιαφέρομαι για τη γεωμετρία του υπερβολικού παραβολοειδούς. Η ιδέα μιας απεριόριστης καμπύλης, η οποία δεν έχει στοιχεία καμπύλης, ήταν η έμπνευση που προκάλεσε 11 χρόνια δουλειάς. Ο πειραματισμός πάνω στην κατασκευή αυτών των επιφανειών οδήγησε τελικά στη δημιουργία της υπερβολικής παραβολοειδούς στήλης το 1985".
Joe Orlando

.*.~.*.~.*.~.*.~.*.~.*



Πηγές: