Εμφάνιση αναρτήσεων με ετικέτα καμπύλες στο επίπεδο. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα καμπύλες στο επίπεδο. Εμφάνιση όλων των αναρτήσεων

Τετάρτη 14 Φεβρουαρίου 2024

Ο Άγιος Βαλεντίνος πάει Λύκειο...


Κάθε γραμμή στο επίπεδο είναι μια γεωμετρική οντότητα, η οποία "συνοδεύεται" και από τη δική της εξίσωση, που είναι η αλγεβρική της "υπόσταση". Αυτή είναι η βασική σύνδεση της Άλγεβρας με τη Γεωμετρία. Για παράδειγμα, η εξίσωση της μορφής \( αx + βy = γ \), με \( α \neq 0 \) ή \( β \neq 0 \) παριστάνει ευθεία. Η εξίσωση της μορφής \( x^2 + y^2 = ρ^2 \) παριστάνει κύκλο. 

Αν θέλεις να ζωγραφίσεις μία καρδιά, μπορείς να χρησιμοποιήσεις μία από τις παρακάτω εξισώσεις. Η πρώτη καμπύλη (πάνω αριστερά) ονομάζεται καρδιοειδής καμπύλη.


Wolfram Mathworld heart
Πηγή εικόνας: Wolfram MathWorld


Στο σχολείο μας, είπαμε να αφήσουμε για μια στιγμή την ευθεία και τον κύκλο των Μαθηματικών Κατεύθυνσης της Β΄ και να σχεδιάσουμε, χρησιμοποιώντας το Geogebra, τη δική μας καρδιά... 


Geogebra 1ο ΓΕΛ Καλύμνου Μαθηματικά Κατεύθυνσης




Geogebra heart


Geogebra heart



Κυριακή 22 Ιανουαρίου 2023

Μαθηματικά σε γλώσσα προγραμματισμού BASIC-256 παράγουν έργα τέχνης


O Joel Kahn χρησιμοποιεί τη γλώσσα προγραμματισμού BASIC-256 ως εργαλείο, σε συνδυασμό με τα Μαθηματικά (κυρίως Γεωμετρία, Αναλυτική Γεωμετρία, Άλγεβρα, αλλά και Τριγωνομετρία) και παράγει ψηφιακά έργα τέχνης.


"Deceptive Crescents"

"Overloop"

"Garden of Sierpinski"

"Embedded Gold"

"Galactic Mountain"

"Glow and Converge"

"Hourglass"

"Pyramid Silhouette"

"Metallic Core"

"Red Green Blue Sharpness"

"Seashore"

"Complex Diagonal Symmetry"

"Diagonal Eggs"

"Knots in Hyperspace"

"Rainbow Mountains"

"Sharp Crystals"



Πηγή εικόνων: Imaginary.org


Κυριακή 13 Μαΐου 2018

Τα Μαθηματικά στην Τέχνη: Υπερβολή


Μαθαίνουμε για την υπερβολή μέσα από έργα τέχνης...

Josh Hufford (Σύγχρονος καλλιτέχνης) - "Within The Emptiness: Hyperbola"

Mary Rouncefield (Σύγχρονη καλλιτέχνιδα) - "Hyperbola"

Slav Nedev (Σύγχρονος καλλιτέχνης) - "Y=f(x)" (1995)


Τα βιβλία γράφουν...

Έστω Ε και Ε΄ δύο σημεία του επιπέδου. Ονομάζεται υπερβολή με εστίες τα σημεία Ε και Ε΄ ο γεωμετρικός τόπος C των σημείων του επιπέδου, των οποίων η απόλυτη τιμή της διαφοράς των αποστάσεων από τα Ε και Ε΄ είναι σταθερή και μικρότερη του Ε΄Ε. Η απόσταση Ε΄Ε ονομάζεται εστιακή απόσταση της υπερβολής.


Russell Kightley (Σύγχρονος καλλιτέχνης) - "Hyperbola"


Τα βιβλία επίσης γράφουν...

Η υπερβολή μπορεί να προκύψει από την τομή ενός κώνου με ένα επίπεδο, γι' αυτό και είναι μία από τις κωνικές τομές. 


.*.〰.*.〰.*.〰.*.〰.*.〰.*.〰.*.

"O πίνακας ζωγραφικής "Y=f(x)" δημιουργήθηκε με τη βοήθεια ενός μαθηματικού τύπου, συγκεκριμένα της συνάρτησης y=1/x. H καμπύλη που προκύπτει είναι μια υπερβολή. Η άλλη αρχή που χρησιμοποιήθηκε είναι αυτή της χρυσής τομής. Ήταν ενδιαφέρον να πειραματιστώ, θέλοντας να δείξω πώς μια μαθηματική έκφραση μπορεί επίσης να έχει αισθητική. Τα Μαθηματικά είναι παντού γύρω μας και μας πληροφορούν για την όλη ύπαρξη".
Slav Nedev

.*.〰.*.〰.*.〰.*.〰.*.〰.*.〰.*.



Πηγές:
  • Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Β' Γενικού Λυκείου, ΟΕΔΒ, 2003
  • Θ. Κουφογιώργος, Μαθήματα Αναλυτικής Γεωμετρίας, Τυπογραφείο Πανεπιστημίου Ιωαννίνων, 2004
  • E.H. Gombrich, Το Χρονικό της Τέχνης, Μορφωτικό Ίδρυμα Εθνικής Τραπέζης, 1995
  • Wassily Kandinsky, Σημείο-Γραμμή-Επίπεδο, Εκδόσεις Δωδώνη, 2013
  • Wassily Kandinsky, Για το πνευματικό στην Τέχνη, Εκδόσεις Νεφέλη, 1981
  • H.L.C Jaffe, Η ζωγραφική στον 20ό αιώνα, Εκδόσεις Νεφέλη, 1984
  • Deviant Art: Josh Hufford 
  • Fine Art America: Hyperbola
  • Mary Rouncefield
  • Saatchi Art: Slav Nedev
  • wikipedia.org

Κυριακή 6 Μαΐου 2018

Τα Μαθηματικά στην Τέχνη: Παραβολή


Μαθαίνουμε για την παραβολή μέσα από έργα τέχνης...

Josh Hufford (Σύγχρονος καλλιτέχνης) - "This Holy Reality-Parabola"

Jutta Maria Pusl (Σύγχρονη καλλιτέχνιδα) - "Parabolic"


Mary Rouncefield (Σύγχρονη καλλιτέχνιδα) - "Confined"

Mary Rouncefield (Σύγχρονη καλλιτέχνιδα) - "Area"


Τα βιβλία γράφουν...

Έστω μια ευθεία δ και ένα σημείο Ε εκτός της δ. Ονομάζεται παραβολή με εστία το σημείο Ε και διευθετούσα την ευθεία δ ο γεωμετρικός τόπος C των σημείων του επιπέδου τα οποία ισαπέχουν από την Ε και τη δ. Αν Α είναι η προβολή της εστίας Ε στη διευθετούσα δ, τότε το μέσο Κ του ΕΑ είναι προφανώς σημείο της παραβολής και λέγεται κορυφή της.


Russell Kightley (Σύγχρονος καλλιτέχνης) - "Parabola"



Τα βιβλία επίσης γράφουν...

Η παραβολή μπορεί να προκύψει από την τομή ενός κώνου με ένα επίπεδο, γι' αυτό και είναι μία από τις κωνικές τομές. 


Πηγές:
  • Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Β' Γενικού Λυκείου, ΟΕΔΒ, 2003
  • Θ. Κουφογιώργος, Μαθήματα Αναλυτικής Γεωμετρίας, Τυπογραφείο Πανεπιστημίου Ιωαννίνων, 2004
  • E.H. Gombrich, Το Χρονικό της Τέχνης, Μορφωτικό Ίδρυμα Εθνικής Τραπέζης, 1995
  • Wassily Kandinsky, Σημείο-Γραμμή-Επίπεδο, Εκδόσεις Δωδώνη, 2013
  • Wassily Kandinsky, Για το πνευματικό στην Τέχνη, Εκδόσεις Νεφέλη, 1981
  • H.L.C Jaffe, Η ζωγραφική στον 20ό αιώνα, Εκδόσεις Νεφέλη, 1984
  • Deviant Art: Josh Hufford 
  • Fine Art America: Jutta Maria Pusl
  • Pixels: Russell Kightley
  • Mary Rouncefield
  • wikipedia.org

Δευτέρα 9 Απριλίου 2018

Τα Μαθηματικά στην Τέχνη: Έλλειψη


Μαθαίνουμε για την έλλειψη μέσα από έργα τέχνης.

Πίνακας του Μάλεβιτς που απεικονίζει μια έλλειψη
Kazimir Malevich (1879 - 1935) - "Black Cross on Red Oval" 

Πίνακας του Κέλλυ που απεικονίζει μια έλλειψη
Ellsworth Kelly (1923 - 2015) - "Red/Blue" (1964) 

Πίνακας του Κέλλυ που απεικονίζει τρεις ελλείψεις
Ellsworth Kelly (1923 - 2015) - Blue and Yellow and Red-Orange

Josh Hufford (Σύγχρονος καλλιτέχνης) - "Tedious Path-Ellipse"

Mary Rouncefield (Σύγχρονη καλλιτέχνιδα) - "Ellipse"

Κρεμαστό γλυπτό του 1921 σε σχήμα έλλειψης
"Oval Hanging Construction", κρεμαστό γλυπτό του Alex Rodchenko (1921)

Τα βιβλία γράφουν...

Έλλειψη λέμε το σύνολο των σημείων του επιπέδου, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία (εστίες της έλλειψης) είναι σταθερό και μεγαλύτερο από την απόσταση μεταξύ των εστιών.


Russell Kightley (Σύγχρονος καλλιτέχνης) - "Conic Sections: Ellipse"


Τα βιβλία επίσης γράφουν...

Η έλλειψη μπορεί να προκύψει από την τομή ενός κώνου με ένα επίπεδο, γι' αυτό και είναι μία από τις κωνικές τομές. 


.*.〰.*.〰.*.〰.*.〰.*.〰.*.〰.*.

"Ο θεωρητικός μαθηματικός, όπως ο μουσικός, είναι ένας ελεύθερος δημιουργός ενός κόσμου διατεταγμένης ομορφιάς".
Bertrand Russel (1872 - 1970)

.*.〰.*.〰.*.〰.*.〰.*.〰.*.〰.*.


 Πηγές:
  • Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Β' Γενικού Λυκείου, ΟΕΔΒ, 2003
  • Θ. Κουφογιώργος, Μαθήματα Αναλυτικής Γεωμετρίας, Τυπογραφείο Πανεπιστημίου Ιωαννίνων, 2004.
  • E.H. Gombrich, Το Χρονικό της Τέχνης, Μορφωτικό Ίδρυμα Εθνικής Τραπέζης, 1995
  • Wassily Kandinsky, Σημείο-Γραμμή-Επίπεδο, Εκδόσεις Δωδώνη, 2013
  • Wassily Kandinsky, Για το πνευματικό στην Τέχνη, Εκδόσεις Νεφέλη, 1981
  • H.L.C Jaffe, Η ζωγραφική στον 20ό αιώνα, Εκδόσεις Νεφέλη, 1984
  • Deviant Art: Josh Hufford 
  • Mary Rouncefield
  • Pixels: Russell Kightley
  • wikipedia.org

Δευτέρα 5 Μαρτίου 2018

Τα Μαθηματικά στην Τέχνη: Κύκλος


Θα μάθουμε τον κύκλο μέσα από πίνακες ζωγραφικής και ψηφιακά σχέδια...

Τετράγωνα με ομόκεντρους κύκλους
Wassily Kandinsky (1866 - 1944) - Squares with Concentric Circles (1913)

Κύκλοι μέσα σε κύκλο
Wassily Kandinsky (1866 - 1944) - Circles within a circle (1923)

Διάφοροι κύκλοι
Wassily Kandinsky (1866 - 1944) - Several Circles (1926)

Διπλά ντόμινο
Donald K. Sultan (γεν. 1951) - Double Dominos

Φεγγάρια
Sharon Horvath (Σύγχρονη ζωγράφος) - Moons (2016)

Κύκλοι
Laszlo Moholy-Nagy (1895 - 1946)

Πολύχρωμοι πλανήτες
Kazuya Akimoto (Σύγχρονος ζωγράφος) - "Colorful Planets"

Κύκλος
Lazar Markovich Lissitzky (El Lissitzky) (1890 - 1941)

Κύκλος
Lazar Markovich Lissitzky (El Lissitzky) (1890 - 1941)

Πίνακας του Πάουλ Κλέε
Paul Klee (1879 - 1940) - Senecio (1922)

Κύκλοι
Florin Constantinescu (Σύγχρονος καλλιτέχνης) - Uncertainties (2016)

Μπλε πιάτα
James Pinkerton (γεν. 1958) - Blue Plate Special

Κύκλοι
Julie Gross (Σύγχρονη ζωγράφος) - "Blue Inversion" (2004)

Μαίρη Γουόκερ: Σύγχρονη καλλιτέχνιδα και μαθηματικός
Mairi Walker (Σύγχρονη καλλιτέχνιδα και μαθηματικός) (2013)

Τα βιβλία γράφουν...

Κύκλο λέμε το επίπεδο σχήμα, κάθε σημείο του οποίου απέχει ίση απόσταση (ακτίνα) από ένα σταθερό σημείο
(κέντρο του κύκλου).

Τα βιβλία επίσης γράφουν...

Κύκλος (Ο,ρ) λέγεται ο γεωμετρικός τόπος των σημείων Μ του επιπέδου για τα οποία ισχύει:
ΟΜ = ρ.


Russell Kightley (Σύγχρονος καλλιτέχνης) - "Conic Sections-Circle"


Τα βιβλία γράφουν...

Ο κύκλος μπορεί να προκύψει από την τομή ενός κώνου με ένα επίπεδο, γι' αυτό και είναι μία από τις κωνικές τομές. 


 Πηγές:
  • Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Β' Γενικού Λυκείου, ΟΕΔΒ, 2003
  • Ευκλείδεια Γεωμετρία Α' και Β' Γενικού Λυκείου, Ινστιτούτο Τεχνολογίας Υπολογιστών και Εκδόσεων "Διόφαντος", 2015
  • Θ. Κουφογιώργος, Μαθήματα Αναλυτικής Γεωμετρίας, Τυπογραφείο Πανεπιστημίου Ιωαννίνων, 2004.
  • E.H. Gombrich, Το Χρονικό της Τέχνης, Μορφωτικό Ίδρυμα Εθνικής Τραπέζης, 1995
  • Wassily Kandinsky, Σημείο-Γραμμή-Επίπεδο, Εκδόσεις Δωδώνη, 2013
  • Wassily Kandinsky, Για το πνευματικό στην Τέχνη, Εκδόσεις Νεφέλη, 1981
  • H.L.C Jaffe, Η ζωγραφική στον 20ό αιώνα, Εκδόσεις Νεφέλη, 1984
  • Pixels: Russell Kightley
  • wikipedia.org