28/7/21
Στην εικόνα μπορείτε να διαβάσετε τις ιδιότητες του αριθμού της σημερινής ημερομηνίας: 28721
©Rushik Dharaiya Ka Pitaara
28/7/21
Στην εικόνα μπορείτε να διαβάσετε τις ιδιότητες του αριθμού της σημερινής ημερομηνίας: 28721
©Rushik Dharaiya Ka Pitaara
27/7/21 σήμερα...
Στην εικόνα βλέπουμε τις ιδιότητες που "κρύβονται" στη σημερινή ημερομηνία, δηλαδή κάποιες ενδιαφέρουσες ιδιότητες του αριθμού: 29721
Πρόκειται για μια πραγματικά αξιόλογη δουλειά του συναδέλφου Rushik Dharaiya, τον οποίο ευχαριστώ θερμά!
©Rushik Dharaiya Ka Pitaara
"Η μαθηματική γλώσσα, εκτός του ότι είναι η μοναδική γλώσσα που μπορούμε να μιλήσουμε, είναι στην πραγματικότητα η σωστή γλώσσα".
E.P. Wigner
26/7/21 σήμερα!
Στην εικόνα μπορείτε να διαβάσετε τις αξιοσημείωτες ιδιότητες που "κρύβει" ο αριθμός της σημερινής ημερομηνίας: 26721...
©Rushik Dharaiya Ka Pitaara
Γλυπτό όπου απεικονίζεται ο Αρχάγγελος Γαβριήλ φυσώντας τη σάλπιγγά του για να αναγγείλει την Ημέρα της Κρίσης |
Η Σάλπιγγα (ή κέρας) του Γαβριήλ που απεικονίζεται στο παραπάνω γλυπτό έδωσε (δικαιολογημένα) το όνομά της σε μια επιφάνεια, με την οποία ασχολήθηκε διεξοδικά ο Evangelista Torricelli (1608-1647), μαθητής του Γαλιλαίου, προσπαθώντας να λύσει ένα παράδοξο. Η λέξη "παράδοξο" σημαίνει ότι αν επιχειρήσουμε να χρησιμοποιήσουμε τη διαίσθησή μας για να το ερμηνεύσουμε, αυτό φαίνεται παράλογο. Στον φυσικό κόσμο ίσως και να είναι όντως αδύνατο να συμβεί. Όμως, μαθηματικά, όλα είναι σωστά! Και δεν μπορείς να φέρεις αντίρρηση στα μαθηματικά...
Lady Lindsay Blanche (1844-1912) - "Angel Playing a Flageolet" |
Η Σάλπιγγα του Γαβριήλ (Gabriel's horn, ή Torricelli's trumpet) είναι μια επιφάνεια εκ περιστροφής που προκύπτει αν πάρουμε τη γραφική παράσταση της συνάρτησης \(y=\frac{1}{x} \), με \( x \geq 1\) και την περιστρέψουμε στις τρεις διαστάσεις γύρω από τον άξονα των \(x\).
Περισσότερα γύρω από τις επιφάνειες εκ περιστροφής, μπορείτε να διαβάσετε εδώ...
Russell Kightley (σύγχρονος επιστημονικός γραφίστας) - "Gabriel's Horn" |
Για τη συγκεκριμένη επιφάνεια, ο Torricelli παρατήρησε το 1641 το εξής παράδοξο, γνωστό πλέον και ως το παράδοξο του ελαιοχρωματιστή:
Επομένως ο όγκος της σάλπιγγας του Γαβριήλ βρίσκεται αν υπολογίσουμε το ολοκλήρωμα
Δηλαδή ο όγκος που περικλείεται από τη σάλπιγγα του Γαβριήλ είναι \( \pi\) κυβικές μονάδες.
Δηλαδή το εμβαδόν της επιφάνειας είναι άπειρο! Με άλλα λόγια, έχουμε περιστρέψει μια άπειρη περιοχή γύρω από μια ευθεία και πήραμε έναν πεπερασμένο όγκο! Το παράδοξο του ελαιοχρωματιστή, λοιπόν, μας λέει ότι μπορούμε να γεμίσουμε τη σάλπιγγα του Γαβριήλ με \( \pi \simeq 3,14\) κυβικές μονάδες χρώματος, αλλά δεν υπάρχει αρκετή μπογιά στον κόσμο για να χρωματίσουμε το εξωτερικό της!
Να σημειώσουμε ότι ο Evangelista Torricelli δεν έκανε τους υπολογισμούς του με τη χρήση ολοκληρωμάτων, αφού ο ολοκληρωτικός λογισμός δεν είχε ακόμη επινοηθεί. Στην πραγματικότητα, χρησιμοποίησε μια τεχνική που ονομάζεται μέθοδος του Cavalieri. Αλλά δεν μπορούσε να βγάλει άκρη! Πώς είναι δυνατόν μια επιφάνεια με άπειρο εμβαδόν να περικλείει έναν πεπερασμένο όγκο;
"Gabriel's Horn" |
Πού οφείλεται λοιπόν το παράδοξο αυτό; Έχετε στο νου σας ότι εδώ κάνουμε Μαθηματικά, όχι Φυσική ή άλλες επιστήμες που επιχειρούν να εξηγήσουν το σύμπαν... Η απάντηση είναι πως δεν είναι έγκυρο να υποθέσουμε ότι μπορούμε να εκτελέσουμε διαδικασίες μόνο και μόνο επειδή αυτές συσχετίζονται με πεπερασμένα μεγέθη. H σάλπιγγα του Γαβριήλ είναι μια άπειρη επιφάνεια. Έτσι, είναι δεκτό ότι δεν μπορούμε να βάψουμε την επιφάνεια αυτή, επειδή δεν έχουμε άπειρη μπογιά. Όμως είναι λάθος να συμπεράνουμε ότι μπορούμε να γεμίσουμε το εσωτερικό της, απλώς επειδή υπάρχει η συνολική ποσότητα χρώματος που απαιτείται. Η διαδικασία γεμίσματος δεν θα μπορούσε να γίνει σε πεπερασμένο χρόνο, αφού πρόκειται για μια άπειρη επιφάνεια, δηλαδή δεν έχει τέλος...
Πηγές:
That's Maths: Torricelli's Trumpet & The Painter's Paradox
25/7/21
Στην εικόνα μπορείτε να διαβάσετε τις ιδιότητες που "κρύβει" η σημερινή ημερομηνία, δηλαδή ο αριθμός 25721...
25721 ευχαριστώ στον εξαιρετικό συνάδελφο που δημιούργησε και μου έστειλε την εικόνα.
©Rushik Dharaiya Ka Pitaara
Στην εικόνα μπορείτε να διαβάσετε τις ιδιότητες που "κρύβει" ο αριθμός της σημερινής ημερομηνίας: 24721...
Μου εστάλη σήμερα το πρωί μέσω του LinkedIn και μου φάνηκε τόσο ενδιαφέρον και εμπνευσμένο, που δεν άντεξα να μην το αναδημοσιεύσω!
©Rushik Dharaiya Ka Pitaara
Σελίδα από το βιβλίο |
Ο κύριος Κώστας και η κυρία Ντίνα ζουν μαζί με τα 12 παιδιά τους. Κάποια από αυτά είναι από τον πρώτο γάμο του κυρίου Κώστα και κάποια άλλα από τον πρώτο γάμο της κυρίας Ντίνας. Ο καθένας τους έχει 9 βιολογικά παιδιά. Πόσα παιδιά απέκτησαν μαζί;
Η "Επιπεδοχώρα", πρόδρομος των κλασικών έργων επιστημονικής φαντασίας, αλλά και καυστική κοινωνική σάτιρα της Βικτωριανής Αγγλίας, δημοσιεύτηκε στα τέλη του 19ου αιώνα από τον συγγραφέα, μαθηματικό, φιλόλογο και θεολόγο Edwin A. Abbott και κέρδισε από την πρώτη στιγμή μια δημοτικότητα που παραμένει αμείωτη μέχρι και σήμερα.
Πρόκειται για μια συναρπαστική περιπέτεια μαθηματικής φαντασίας με εικονογράφηση από τον ίδιο τον E. A. Abbott. Η ιστορία διαδραματίζεται σ' έναν δισδιάστατο κόσμο (το επίπεδο), όπου κατοικούν νοήμονα γεωμετρικά σχήματα που κινούνται, μιλούν και έχουν ανθρώπινα αισθήματα. Οι "Γυναίκες" είναι Ευθείες Γραμμές (ευθύγραμμα τμήματα), οι "Στρατιώτες" και οι "Κατώτερες Τάξεις των Εργατών" είναι Ισοσκελή Τρίγωνα, ενώ η "Μεσαία Τάξη" αποτελείται από Ισόπλευρα Τρίγωνα. Οι "Αξιότιμοι Επαγγελματίες" είναι Τετράγωνα και Πεντάγωνα και η τάξη των "Ευγενών" αποτελείται από εξάγωνα, επτάγωνα κλπ, μέχρι τα πολύγωνα με πολύ μεγάλο πλήθος πλευρών, που συμπεριλαμβάνονται στην υψηλότερη τάξη, που λέγεται "Κυκλική ή Ιερατική Τάξη". Όσο περισσότερες, δηλαδή, είναι οι πλευρές του πολυγώνου, τόσο υψηλότερη είναι η τάξη στην οποία ανήκει ο κάτοικος της Επιπεδοχώρας και εδώ είναι που εισέρχεται η καυστική κοινωνική σάτιρα που ασκεί ο E. A. Abbott!
Την τελευταία ημέρα του 1999, παραμονή της νέας χιλιετίας, ο αφηγητής, ένα ορθολογικό Τετράγωνο, θα δει την ισορροπία της επίπεδης ζωής του να ανατρέπεται όταν ένας μυστηριώδης επισκέπτης από τη Χωροχώρα (τον δικό μας κόσμο των τριών διαστάσεων) τού αποκαλύπτει τα μυστικά της Τρίτης Διάστασης.
Το βιβλίο αυτό (τίτλος πρωτοτύπου: FLATLAND, A Romance of many Dimensions) χρησιμοποιείται σε πολλά λύκεια και πανεπιστήμια των ΗΠΑ ως εκπαιδευτικό βοήθημα στο μάθημα της Γεωμετρίας. Αξίζει να το διαβάσετε κι εσείς!
Πηγή: Απειροστικός Λογισμός II, Σ.Κ. Ντούγιας, Leader Books, 2005 |
Πηγή: Απειροστικός Λογισμός II, Σ.Κ. Ντούγιας, Leader Books, 2005 |
"Amat victoria curam" ("Η νίκη αγαπά την προετοιμασία").Gaius Victorius Catullus (1ος αιώνας π.Χ.)