Εμφάνιση αναρτήσεων με ετικέτα θεωρία αριθμών. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα θεωρία αριθμών. Εμφάνιση όλων των αναρτήσεων

Κυριακή 2 Φεβρουαρίου 2025

Αριθμοί Friedman

 

Αριθμοί Friedman


📖Ένας αριθμός Friedman είναι ένας θετικός ακέραιος που μπορεί να προκύψει χρησιμοποιώντας τα δικά του ψηφία, μαζί με ένα τουλάχιστον από τα σύμβολα +, -, ·, /, ^, (, ). 

  • Τα ψηφία του χρησιμοποιούνται ακριβώς μία φορά το καθένα.
  • Επιτρέπεται να συγκολληθούν δύο ή περισσότερα ψηφία.

Οι αριθμοί Friedman στο δεκαδικό σύστημα αρίθμησης, ξεκινώντας από τον μικρότερο, είναι:

\(25=5^2\)

\(121=11^2\)

\(125=5^{1+2}\)

\(126=6 \cdot 21\)

\(127=2^7-1\)

\(128=2^{8-1}\)

\(153=3 \cdot 51\)

\(216=6^{2+1}\)

\(289=(8+9)^2\)

\(343=(3+4)^3\)

\(347=7^3+4\)

\(625=5^{6-2}\)

\(688=8 \cdot 86\)

\(736=7+3^6\)

\(1022=2^{10}-2\)

\(1024=(4-2)^{10}\)

\(1206=6 \cdot 201\)

\(1255=5 \cdot 251\)

\(1260=6 \cdot 210 = 21 \cdot 60\)

\(1258=(1+2^8) \cdot 5\)

\(1296=6^{(9-1)/2}\)

\(1395=15 \cdot 93\)

\(1435=35 \cdot 41\)

\(1503=3 \cdot 501\)

\(1530=3 \cdot 510\)

\(1792=7 \cdot 2^{9-1}\)

\(1827=21 \cdot 87\)

\(2048=\frac{8^4}{2}+0=\frac{8^4}{2+0}\)

\(2187=(2+1^8)^7\)

\(2349=29 \cdot 3^4\)

 ...


📖Ένας πρώτος αριθμός Friedman είναι ένας αριθμός Friedman που επιπλέον είναι πρώτος.

Οι πρώτοι αριθμοί Friedman στο δεκαδικό σύστημα αρίθμησης είναι:

127, 347, 2503, 12101, 12107, 12109, 15629, 15641, 15661, 15667, 15679, 16381, 16447, 16759, 16879, 19739, 21943, 27653, 28547, 28559, 29527, 29531, 32771, 32783, 35933, 36457, 39313, 39343, 43691, 45361, 46619, 46633, 46643, 46649, 46663, 46691, 48751, 48757, 49277, 58921, 59051, 59053, 59263, 59273, 64513, 74353, 74897, 78163, 83357, ... 

 

📖Ένας αριθμός Friedman λέγεται ωραίος, όταν η μαθηματική έκφραση που τον συνθέτει, μπορεί να γραφεί έτσι, ώστε να περιέχει τα ψηφία με την ίδια σειρά που περιέχονται στον αριθμό.

Για παράδειγμα:

\(127=2^7-1=-1+2^7\)

\(343=(3+4)^3\)

Αν, μάλιστα, τυχαίνει να είναι και πρώτος, τότε λέγεται ωραίος πρώτος αριθμός Friedman. To 127 είναι ένας ωραίος πρώτος αριθμός Friedman.

Από την άλλη, το 121 και το 343 είναι παλινδρομικοί αριθμοί Friedman, αφού διαβάζονται το ίδιο είτε ευθέως είτε ανάποδα.

 

🧛🏻‍♂️Μια ειδική περίπτωση των αριθμών Friedman είναι οι βαμπιρικοί αριθμοί, όπως ο 1260 και ο 1395, τους οποίους είχαμε γνωρίσει σε παλιότερη ανάρτηση.



🖥️Μερικοί αριθμοί Friedman στο δυαδικό σύστημα αρίθμησης είναι: 11001, 11011111111, 1001111, 1010001, ...

(Αυτοί που σημειώνονται έντονα είναι ωραίοι αριθμοί Friedman, αλλά και παλινδρομικοί).


🌐Για περισσότερα, σας παραπέμπω:

Numbers Aplenty, Friedman Numbers 

Online Encyclopedia of Integer Sequences, Erich Friedman 


Σάββατο 11 Ιανουαρίου 2025

Νάρκισσοι... αριθμοί!


Νάρκισσοι αριθμοί


Σύμφωνα με τη μυθολογία, ο ωραίος νεαρός Νάρκισσος, καθισμένος κοντά σε μια πηγή, είδε μια μέρα το πρόσωπό του στα νερά της πηγής. Γοητεύτηκε από την εικόνα του που καθρεφτιζόταν στο νερό και θέλησε, βυθίζοντας το βραχίονα του στο νερό να την αιχμαλωτίσει. Επειδή, όμως, παρά τις προσπάθειές του, δεν το κατόρθωνε, παρέμεινε στη θέση αυτή αυτοθαυμαζόμενος, μέχρι που πέθανε. Στη θέση εκείνη μετά από λίγο φύτρωσε το ομώνυμο λουλούδι.

Στα μαθηματικά, νάρκισσος αριθμός ονομάζεται ένας ν-ψήφιος αριθμός, του οποίου το άθροισμα των ψηφίων, υψωμένα στη νιοστή δύναμη, δίνει τον αριθμό αυτόν.

 

Για παράδειγμα:

\(153=1^3+5^3+3^3\)

\(1634=1^4+6^4+3^4+4^4\)

\(54748=5^5+4^5+7^5+4^5+8^5\)

 

Στο δεκαδικό σύστημα αρίθμησης, υπάρχουν μόνο 88 νάρκισσοι αριθμοί, οι οποίοι είναι οι παρακάτω:


Πλήθος ψηφίων

Αριθμοί

1

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

3

153, 370, 371, 407

4

1634, 8208, 9474

5

54748, 92727, 93084

6

548834

7

1741725, 4210818, 9800817, 9926315

8

24678050, 24678051, 88593477

9

146511208, 472335975, 534494836, 912985153

10

4679307774

11

32164049650, 32164049651, 40028394225, 42678290603, 44708635679, 49388550606, 82693916578, 94204591914

14

28116440335967

16

4338281769391370, 4338281769391371

17

21897142587612075, 35641594208964132, 35875699062250035

19

1517841543307505039, 3289582984443187032, 4498128791164624869, 4929273885928088826

20

63105425988599693916

21

128468643043731391252, 449177399146038697307

23

21887696841122916288858, 27879694893054074471405, 27907865009977052567814, 28361281321319229463398, 35452590104031691935943

24

174088005938065293023722, 188451485447897896036875, 239313664430041569350093

25

1550475334214501539088894, 1553242162893771850669378, 3706907995955475988644380, 3706907995955475988644381, 4422095118095899619457938

27

121204998563613372405438066, 121270696006801314328439376, 128851796696487777842012787, 174650464499531377631639254, 177265453171792792366489765

29

14607640612971980372614873089, 19008174136254279995012734740, 19008174136254279995012734741, 23866716435523975980390369295

31

1145037275765491025924292050346, 1927890457142960697580636236639, 2309092682616190307509695338915

32

17333509997782249308725103962772

33

186709961001538790100634132976990, 186709961001538790100634132976991

34

1122763285329372541592822900204593

35

12639369517103790328947807201478392, 12679937780272278566303885594196922

37

1219167219625434121569735803609966019

38

12815792078366059955099770545296129367

39

115132219018763992565095597973971522400, 115132219018763992565095597973971522401


Τετάρτη 27 Νοεμβρίου 2024

Χαρούμενοι αριθμοί!


"Χαρούμενος αριθμός" ονομάζεται ένας θετικός ακέραιος, στον οποίο το άθροισμα των τετραγώνων των ψηφίων του, όταν υπολογίζεται επαναληπτικά, τελικά ισούται με 1.

Πιο συγκεκριμένα, ένας χαρούμενος αριθμός ορίζεται ως εξής: Ξεκινάμε από έναν θετικό ακέραιο αριθμό α και παίρνουμε τα ψηφία του. Υψώνουμε το κάθε ψηφίο στο τετράγωνο και έπειτα τα προσθέτουμε. Για το αποτέλεσμα που βρήκαμε επαναλαμβάνουμε την ίδια διαδικασία. Αν τελικά καταλήξουμε στο 1, τότε ο α είναι χαρούμενος αριθμός.

Αν το άθροισμα των τετραγώνων των ψηφίων του δεν φτάνει ποτέ το 1, τότε ο αριθμός ονομάζεται "δυστυχισμένος αριθμός". 

Για παράδειγμα, το 19 είναι χαρούμενος αριθμός, αφού:  


19


Το 4 είναι δυστυχισμένος αριθμός, αφού η παραπάνω διαδικασία καταλήγει σε έναν κύκλο επαναλαμβανόμενων αριθμών:

4, 16, 37, 58, 89, 145, 42, 20, 4, ...


Οι πρώτοι χαρούμενοι αριθμοί είναι: 

1, 7, 10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100, 103, 109, 129, 130, 133, 139, 167, 176, 188, 190, 192, 193, 203, 208, 219, 226, 230, 236, 239, 262, 263, 280, 291, 293, 301, 302, 310, 313, 319, 320, 326, 329, 331, 338, 356, 362, 365, 367, 368, 376, 379, 383, 386, 391, 392, 397, 404, 409, 440, 446, 464, 469, 478, 487, 490, 496... 


Ένας πρώτος αριθμός που είναι χαρούμενος αριθμός ονομάζεται χαρούμενος πρώτος αριθμός. Οι πρώτοι χαρούμενοι πρώτοι αριθμοί είναι οι:

7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487 …


Όλοι οι πρώτοι αριθμοί της μορφής \(10^ν +3\) ή \(10^ν +9\), \(ν=1,2,...\) είναι χαρούμενοι πρώτοι αριθμοί.

👉Δείτε εδώ μια οπτικοποίηση των χαρούμενων και των δυστυχισμένων αριθμών, με τη χρήση κώδικα.


Οπτικοποίηση



Πηγές: 

LinkedIn | Fermat´s Library

Happy Numbers Visualization


Δευτέρα 18 Νοεμβρίου 2024

Ένας... εντυπωσιακός πρώτος


Ο αριθμός S παρακάτω, είναι το άθροισμα των δυνάμεων των πρώτων αριθμών από το 2 μέχρι το 89, με εκθέτη τον εαυτό τους. 


2^2+3^3+5^5+...+89^{89}

Ο S είναι επίσης πρώτος αριθμός. Μάλιστα, είναι ο μεγαλύτερος πρώτος αριθμός που γνωρίζουμε μέχρι σήμερα ότι μπορεί να γραφεί σε αυτή τη μορφή!


Κυριακή 3 Νοεμβρίου 2024

Πρώτοι αριθμοί: Από τα Μαθηματικά του Δημοτικού, στη σύγχρονη έρευνα

 

Οι πρώτοι αριθμοί είναι αυτοί που έχουν ακριβώς δύο διαιρέτες: τον εαυτό τους και το 1. Οι αρχικοί αριθμοί που είναι πρώτοι είναι οι: 2, 3, 5, 7, 11, 13.


πρώτοι αριθμοί
Ο πρώτοι... πρώτοι αριθμοί

Τα δομικά στοιχεία των φυσικών αριθμών

Η τεράστια σημασία των πρώτων αριθμών για τη Θεωρία Αριθμών αλλά και για τα Μαθηματικά γενικότερα, πηγάζει από το Θεμελιώδες Θεώρημα της Αριθμητικής. Το θεώρημα αυτό λέει ότι κάθε φυσικός αριθμός, μεγαλύτερος του 1, μπορεί να γραφεί σαν γινόμενο πρώτων αριθμών κατά μοναδικό τρόπο (χωρίς να λαμβάνεται υπόψη η σειρά των παραγόντων).

Παραδείγματα:

\(15 = 3 \cdot 5\)

\(210 = 2 \cdot 3 \cdot 5 \cdot 7\)

\(396 = 2^2 \cdot 3^2 \cdot 11\)

 

✅Η παραπάνω γραφή ονομάζεται ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων ή πρωτογενής ανάλυση του αριθμού. Επίσης λέμε ότι ο αριθμός είναι γραμμένος σε κανονική μορφή.

 

Πώς γίνεται η ανάλυση ενός αριθμού σε γινόμενο πρώτων παραγόντων;

Παράδειγμα: Θέλουμε να αναλύσουμε το 360 σε γινόμενο πρώτων παραγόντων. Θα χρησιμοποιήσουμε τη μέθοδο των διαδοχικών διαιρέσεων.


ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων


👣 Βήμα  1. Εξετάζουμε, σύμφωνα με τα κριτήρια διαιρετότητας, ποιος είναι ο μικρότερος πρώτος αριθμός που διαιρεί το 360. Βρίσκουμε ότι είναι το 2 και το γράφουμε στα δεξιά.

👣 Βήμα 2. Διαιρούμε το 360 με το 2 και γράφουμε από κάτω το πηλίκο, που είναι το 180.

👣 Βήμα 3. Συνεχίζουμε την ίδια διαδικασία για το 180. Το 180 διαιρείται κι αυτό με το 2. Διαιρούμε με το 2 και γράφουμε από κάτω το πηλίκο, που είναι το 90.

👣 Βήμα 4. Διαιρούμε το 90 με το 2 και γράφουμε από κάτω το πηλίκο, που είναι το 45.

👣 Βήμα 5. Το 45 τώρα δεν διαιρείται με το 2. Πηγαίνουμε στον επόμενο πρώτο αριθμό, που είναι το 3. Βρίσκουμε ότι το 45 διαιρείται με 3.

👣 Βήμα 6. Διαιρούμε το 45 με το 3 και γράφουμε από κάτω το πηλίκο, που είναι το 15.

👣 Βήμα 7. Το 15 διαιρείται με το 3. Διαιρούμε το 15 με το 3 και γράφουμε από κάτω το πηλίκο, που είναι το 5.

👣 Βήμα 8. Το 5 τώρα δεν διαιρείται με το 3. Πηγαίνουμε στον επόμενο πρώτο αριθμό, που είναι το 5.

👣 Βήμα 9. Το 5 προφανώς διαιρείται με το 5. Γράφουμε από κάτω το πηλίκο, που είναι το 1.

👣 Βήμα 10. Μόλις βρούμε πηλίκο το 1, η διαδικασία τελειώνει!

👣 Τελευταίο βήμα: Γράφουμε τον αριθμό 360 ως το γινόμενο των πρώτων αριθμών που έχουμε γράψει στην τελευταία στήλη:

360 = 2 · 2 · · · · 5 = 2^3 · 3^2 · 

 

 👉Περισσότερα παραδείγματα μπορείτε να παρακολουθήσετε σε αυτό το βίντεο.

 

Εφαρμογές των πρώτων αριθμών στην Κρυπτογραφία

Κρυπτογραφία είναι η επιστήμη που ασχολείται με την κωδικοποίηση και αποκωδικοποίηση μυστικών μηνυμάτων. Στη σημερινή ψηφιακή εποχή, η ασφαλής επικοινωνία είναι ζωτικής σημασίας. Είτε στέλνουμε ένα e-mail, είτε πραγματοποιούμε μια ηλεκτρονική αγορά, η κρυπτογραφία διασφαλίζει ότι οι πληροφορίες μας παραμένουν εμπιστευτικές. Στον κόσμο της σύγχρονης κρυπτογραφίας, οι πρώτοι αριθμοί είναι οι «αφανείς ήρωες». Η κρυπτογράφηση και αποκρυπτογράφηση βασίζονται στη Θεωρία Αριθμών και ειδικότερα στους πρώτους αριθμούς και στο Θεμελιώδες Θεώρημα της Αριθμητικής.


κρυπτογραφία


Οι επιστήμονες του χώρου χρησιμοποιούν κατά κόρον φυσικούς αριθμούς που είναι γινόμενο τεράστιων πρώτων αριθμών. Ας πάρουμε για παράδειγμα τον αλγόριθμο RSA, ο οποίος χρησιμοποιεί δύο μεγάλους πρώτους αριθμούς p και q. Αφού τους πολλαπλασιάσει, χρησιμοποιεί το γινόμενό τους n = · q ως μέρος των κλειδιών κρυπτογράφησης και αποκρυπτογράφησης. Ο αριθμός n είναι δημόσιος και ονομάζεται «δημόσιο κλειδί», είναι δηλαδή, όχι μόνο γνωστός, αλλά και δημοσιευμένος σε κάποιο βιβλίο ανάλογο του τηλεφωνικού καταλόγου. Για να μπορέσει κανείς να «χακάρει» ένα σύστημα, θα πρέπει να έχει βρει την πρωτογενή ανάλυση του n, δηλαδή θα πρέπει να υπολογίσει τους πρώτους αριθμούς p και q από τους οποίους «αποτελείται». Στην πράξη, αυτοί οι πρώτοι αριθμοί έχουν τόσο πολλά ψηφία που, ακόμη και με χρήση υπολογιστικών συστημάτων τελευταίας τεχνολογίας που δουλεύουν νυχθημερόν, χρειάζονται δεκάδες χρόνια προκειμένου να υπολογιστούν!


❓Άραγε, η ανάπτυξη υπερσύγχρονης τεχνολογίας θα «προλάβει» τις εξελίξεις στην έρευνα της Θεωρίας Αριθμών;


Πέμπτη 31 Οκτωβρίου 2024

Παλινδρομικοί αριθμοί, "κακοί" πρώτοι αριθμοί και ο πρώτος αριθμός του Βηλφεγώρ

 

παλινδρομικοί αριθμοί


Τι είναι οι παλινδρομικοί αριθμοί;

Παλινδρομικοί ή παλίνδρομοι αριθμοί είναι αυτοί που διαβάζονται το ίδιο είτε ευθέως είτε αντίστροφα. Για παράδειγμα, οι αριθμοί 11, 363, 5225, 13931, 1234321, 20300302 είναι παλινδρομικοί. Τους παλινδρομικούς αριθμούς τους συναντάμε συχνά στα ψυχαγωγικά μαθηματικά, με εφαρμογές στα μαγικά τετράγωνα, τους κύβους του Ρούμπικ και σε σκακιστικά προβλήματα.

 

Κατασκευή παλινδρομικών αριθμών

Πώς μπορούμε να κατασκευάσουμε τέτοιους αριθμούς; Ας επιλέξουμε έναν τυχαίο αριθμό, για παράδειγμα το 83. Αντιστρέφουμε τη σειρά των ψηφίων, δηλαδή παίρνουμε το 38 και τον προσθέτουμε στον αρχικό μας αριθμό. Προκύπτει έτσι: 83+38=121, έχουμε δηλαδή έναν παλινδρομικό αριθμό.

Επιλέγουμε έναν άλλο τυχαίο αριθμό, για παράδειγμα το 67. Αντιστρέφουμε τη σειρά των ψηφίων του, δηλαδή παίρνουμε το 76 και τον προσθέτουμε στον αρχικό μας αριθμό. Έχουμε δηλαδή 67+76=143, που όμως δεν είναι παλινδρομικός. Τότε επαναλαμβάνουμε την ίδια διαδικασία κι έχουμε 143+341=484. Προέκυψε, δηλαδή, ένας παλινδρομικός αριθμός.

Η ιδιότητα αυτή που έχουν οι αριθμοί, να καταλήγουν σε παλινδρομικούς μετά από μερικές προσθέσεις με τον αντεστραμμένο εαυτό τους φαίνεται να ισχύει για όλους... Υπάρχουν όμως μερικοί αριθμοί για τους οποίους ακόμα δεν έχουμε καταλήξει σε παλίνδρομο παράγωγό τους. Ο μικρότερος από αυτούς, είναι το 196. Κατόπιν πολλών πράξεων, φτάσαμε σε αριθμό με 263.000.000 ψηφία, ο οποίος όμως συνέχιζε να μην είναι παλινδρομικός! Για αριθμούς μικρότερους του 10.000 απαιτούνται το πολύ 24 προσθέσεις και το ρεκόρ αυτό κατέχει ο αριθμός 89.


Πόσοι είναι οι παλινδρομικοί αριθμοί;

Γνωρίζουμε από τον Ευκλείδη ότι οι πρώτοι αριθμοί είναι άπειροι σε πλήθος. Ακόμη. όμως, δεν γνωρίζουμε με βεβαιότητα αν είναι άπειροι και οι παλινδρομικοί αριθμοί. 

💥Μπορείτε να υπολογίσετε πόσοι είναι οι τετραψήφιοι παλινδρομικοί αριθμοί;

 

Ο πρώτος αριθμός της… κολάσεως

Ο Clifford A. Pickover, διάσημος Αμερικανός συγγραφέας και αρθρογράφος, ερευνητής της IBM για πολλά χρόνια, έχει ασχοληθεί ιδιαίτερα με τους αριθμούς και την γοητεία που ασκούν στους ανθρώπους. Έχει συγγράψει δεκάδες βιβλία με ποικίλα θέματα, από τα μαθηματικά, τη φυσική, τους υπολογιστές και την ιατρική, μέχρι τις τέχνες, τους γρίφους και το θάνατο. Στόχος των βιβλίων του, που έχουν μεταφραστεί σε δεκάδες γλώσσες, είναι, όπως λέει ο ίδιος, η έκθεση σε ένα ευρύ κοινό των θαυμάτων της επιστήμης και των μαθηματικών, χρησιμοποιώντας όμως «παιχνιδιάρικες» έννοιες που θα τραβήξουν το ενδιαφέρον του κόσμου.


Belphegor’s prime

Ο ίδιος «βάφτισε» και έναν παλινδρομικό πρώτο αριθμό, τον 1.000.000.000.000.066.600.000.000.000.001 (\(10^{30} + 666 \cdot 10^{14} + 1\)), ο οποίος ανακαλύφθηκε από τον μαθηματικό Harvey Dubner, γνωστό για την συμβολή του στην πολύ δύσκολη διαδικασία εύρεσης μεγάλων πρώτων αριθμών. Ο συγκεκριμένος αυτός αριθμός έχει πολλές ιδιότητες και ως πρώτος, αλλά και ως παλινδρομικός. Αυτό, όμως, που κέντρισε το ενδιαφέρον στον Pickover είναι ότι έχει 13 μηδενικά αριστερά και 13 δεξιά του 666. Επιπλέον, το πλήθος των ψηφίων του είναι 31 (ο αριθμός 13 αντεστραμμένος).

Τον ονόμασε πρώτο αριθμό του Βηλφεγώρ (Belphegor's prime), ενός από τους επτά πρίγκιπες της κόλασης, ο οποίος δελεάζει τους θνητούς με το δώρο της ανακάλυψης και των εφευρέσεων. Προειδοποίησε τον κόσμο ότι ο αριθμός αυτός είναι απειλητικός και πως δεν πρέπει να τον κοιτάζουμε για πολλή ώρα, αλλά φυσικά στο τέλος εξηγεί ότι αυτά που γράφει δεν πρέπει να λαμβάνονται και πολύ στα σοβαρά!


Belphegor's prime is the palindromic prime number 1000000000000066600000000000001
Ο συμβολισμός του πρώτου αριθμού του Βηλφεγώρ με τον αριθμό π, ανάποδα!


Ο Pickover ήταν εκείνος που όρισε και τους βαμπιρικούς αριθμούς, για τους οποίους είχαμε μιλήσει (σε παλιότερο Halloween) εδώ…


"Κακοί" πρώτοι αριθμοί

Ο πρώτος αριθμός του Βηλφεγώρ ανήκει και στην κατηγορία των "κακών" πρώτων αριθμών, δηλαδή των πρώτων αριθμών που περιέχουν το 666 στα ψηφία τους. Στο παρακάτω βίντεο από το κανάλι Numberphile, παρουσιάζονται πολλοί από αυτούς τους... σατανικούς αριθμούς!





=========================================


Πηγές - Παραπομπές

Belphegor's prime: 1000000000000066600000000000001, by Dr. Cliff Pickover

Curioustem.org: Belphegor's prime

Googology Wiki: Belphegor's prime

Pickover.com

Thesspress.gr|Θανάσης Κοπάδης: Παλίνδρομοι αριθμοί, αριθμοί βαμπίρ και ο πρώτος αριθμός της κολάσεως

Wikipedia.org|Παλινδρομικός αριθμός

Wolfram Mathworld|Belphegor's prime

YouTube|Numberphile: The most evil number