Εμφάνιση αναρτήσεων με ετικέτα άλγεβρα. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα άλγεβρα. Εμφάνιση όλων των αναρτήσεων

Κυριακή 3 Νοεμβρίου 2024

Πρώτοι αριθμοί: Από τα Μαθηματικά του Δημοτικού, στη σύγχρονη έρευνα

 

Οι πρώτοι αριθμοί είναι αυτοί που έχουν ακριβώς δύο διαιρέτες: τον εαυτό τους και το 1. Οι αρχικοί αριθμοί που είναι πρώτοι είναι οι: 2, 3, 5, 7, 11, 13.


πρώτοι αριθμοί
Ο πρώτοι... πρώτοι αριθμοί

Τα δομικά στοιχεία των φυσικών αριθμών

Η τεράστια σημασία των πρώτων αριθμών για τη Θεωρία Αριθμών αλλά και για τα Μαθηματικά γενικότερα, πηγάζει από το Θεμελιώδες Θεώρημα της Αριθμητικής. Το θεώρημα αυτό λέει ότι κάθε φυσικός αριθμός, μεγαλύτερος του 1, μπορεί να γραφεί σαν γινόμενο πρώτων αριθμών κατά μοναδικό τρόπο (χωρίς να λαμβάνεται υπόψη η σειρά των παραγόντων).

Παραδείγματα:

\(15 = 3 \cdot 5\)

\(210 = 2 \cdot 3 \cdot 5 \cdot 7\)

\(396 = 2^2 \cdot 3^2 \cdot 11\)

 

✅Η παραπάνω γραφή ονομάζεται ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων ή πρωτογενής ανάλυση του αριθμού.

 

Πώς γίνεται η ανάλυση ενός αριθμού σε γινόμενο πρώτων παραγόντων;

Παράδειγμα: Θέλουμε να αναλύσουμε το 360 σε γινόμενο πρώτων παραγόντων. Θα χρησιμοποιήσουμε τη μέθοδο των διαδοχικών διαιρέσεων.


ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων


👣 Βήμα  1. Εξετάζουμε, σύμφωνα με τα κριτήρια διαιρετότητας, ποιος είναι ο μικρότερος πρώτος αριθμός που διαιρεί το 360. Βρίσκουμε ότι είναι το 2 και το γράφουμε στα δεξιά.

👣 Βήμα 2. Διαιρούμε το 360 με το 2 και γράφουμε από κάτω το πηλίκο, που είναι το 180.

👣 Βήμα 3. Συνεχίζουμε την ίδια διαδικασία για το 180. Το 180 διαιρείται κι αυτό με το 2. Διαιρούμε με το 2 και γράφουμε από κάτω το πηλίκο, που είναι το 90.

👣 Βήμα 4. Διαιρούμε το 90 με το 2 και γράφουμε από κάτω το πηλίκο, που είναι το 45.

👣 Βήμα 5. Το 45 τώρα δεν διαιρείται με το 2. Πηγαίνουμε στον επόμενο πρώτο αριθμό, που είναι το 3. Βρίσκουμε ότι το 45 διαιρείται με 3.

👣 Βήμα 6. Διαιρούμε το 45 με το 3 και γράφουμε από κάτω το πηλίκο, που είναι το 15.

👣 Βήμα 7. Το 15 διαιρείται με το 3. Διαιρούμε το 15 με το 3 και γράφουμε από κάτω το πηλίκο, που είναι το 5.

👣 Βήμα 8. Το 5 τώρα δεν διαιρείται με το 3. Πηγαίνουμε στον επόμενο πρώτο αριθμό, που είναι το 5.

👣 Βήμα 9. Το 5 προφανώς διαιρείται με το 5. Γράφουμε από κάτω το πηλίκο, που είναι το 1.

👣 Βήμα 10. Μόλις βρούμε πηλίκο το 1, η διαδικασία τελειώνει!

👣 Τελευταίο βήμα: Γράφουμε τον αριθμό 360 ως το γινόμενο των πρώτων αριθμών που έχουμε γράψει στην τελευταία στήλη:

360 = 2 · 2 · · · · 5 = 2^3 · 3^2 · 

 

 👉Περισσότερα παραδείγματα μπορείτε να παρακολουθήσετε σε αυτό το βίντεο.

 

Εφαρμογές των πρώτων αριθμών στην Κρυπτογραφία

Κρυπτογραφία είναι η επιστήμη που ασχολείται με την κωδικοποίηση και αποκωδικοποίηση μυστικών μηνυμάτων. Στη σημερινή ψηφιακή εποχή, η ασφαλής επικοινωνία είναι ζωτικής σημασίας. Είτε στέλνουμε ένα e-mail, είτε πραγματοποιούμε μια ηλεκτρονική αγορά, η κρυπτογραφία διασφαλίζει ότι οι πληροφορίες μας παραμένουν εμπιστευτικές. Στον κόσμο της σύγχρονης κρυπτογραφίας, οι πρώτοι αριθμοί είναι οι «αφανείς ήρωες». Η κρυπτογράφηση και αποκρυπτογράφηση βασίζονται στη Θεωρία Αριθμών και ειδικότερα στους πρώτους αριθμούς και στο Θεμελιώδες Θεώρημα της Αριθμητικής.


κρυπτογραφία


Οι επιστήμονες του χώρου χρησιμοποιούν κατά κόρον φυσικούς αριθμούς που είναι γινόμενο τεράστιων πρώτων αριθμών. Ας πάρουμε για παράδειγμα τον αλγόριθμο RSA, ο οποίος χρησιμοποιεί δύο μεγάλους πρώτους αριθμούς p και q. Αφού τους πολλαπλασιάσει, χρησιμοποιεί το γινόμενό τους n = · q ως μέρος των κλειδιών κρυπτογράφησης και αποκρυπτογράφησης. Ο αριθμός n είναι δημόσιος και ονομάζεται «δημόσιο κλειδί», είναι δηλαδή, όχι μόνο γνωστός, αλλά και δημοσιευμένος σε κάποιο βιβλίο ανάλογο του τηλεφωνικού καταλόγου. Για να μπορέσει κανείς να «χακάρει» ένα σύστημα, θα πρέπει να έχει βρει την πρωτογενή ανάλυση του n, δηλαδή θα πρέπει να υπολογίσει τους πρώτους αριθμούς p και q από τους οποίους «αποτελείται». Στην πράξη, αυτοί οι πρώτοι αριθμοί έχουν τόσο πολλά ψηφία που, ακόμη και με χρήση υπολογιστικών συστημάτων τελευταίας τεχνολογίας που δουλεύουν νυχθημερόν, χρειάζονται δεκάδες χρόνια προκειμένου να υπολογιστούν!


❓Άραγε, η ανάπτυξη υπερσύγχρονης τεχνολογίας θα «προλάβει» τις εξελίξεις στην έρευνα της Θεωρίας Αριθμών;


Κυριακή 6 Οκτωβρίου 2024

Πρώτοι και σύνθετοι αριθμοί: Το κόσκινο του Ερατοσθένη και μια απόδειξη του Ευκλείδη

 

πρώτοι αριθμοί


Πρώτος καλείται ένας φυσικός αριθμός που διαιρείται μόνο με το 1 και τον εαυτό του. Για παράδειγμα οι αριθμοί 2, 3, 11, 17 είναι πρώτοι. Ένας αριθμός που δεν είναι πρώτος καλείται σύνθετος. Για παράδειγμα, ο αριθμός 9 είναι σύνθετος, αφού εκτός της μονάδας και του εαυτού του έχει διαιρέτη και το 3.

Επειδή το 1 έχει μόνο έναν διαιρέτη (το 1, που είναι και ο εαυτός του), δεν είναι ούτε πρώτος ούτε σύνθετος αριθμός. Το 2 είναι ο μοναδικός άρτιος πρώτος, ενώ όλοι οι υπόλοιποι πρώτοι αριθμοί είναι περιττοί.

Μπορούμε να βρούμε όλους τους πρώτους αριθμούς με ένα «κόσκινο»: Το κόσκινο του Ερατοσθένη κρατάει όλους τους σύνθετους αριθμούς και αφήνει να περάσουν όλοι οι πρώτοι.


Πρώτος καλείται ένας φυσικός αριθμός που διαιρείται μόνο με το 1 και τον εαυτό του. Για παράδειγμα οι αριθμοί 2, 3, 11, 17 είναι πρώτοι. Ένας αριθμός που δεν είναι πρώτος καλείται σύνθετος. Για παράδειγμα, ο αριθμός 9 είναι σύνθετος, αφού εκτός της μονάδας και του εαυτού του έχει διαιρέτη και το 3. Επειδή το 1 έχει μόνο έναν διαιρέτη (το 1, που είναι και ο εαυτός του), δεν είναι ούτε πρώτος ούτε σύνθετος αριθμός. Το 2 είναι ο μοναδικός άρτιος πρώτος, ενώ όλοι οι υπόλοιποι πρώτοι αριθμοί είναι περιττοί. Μπορούμε να βρούμε όλους τους πρώτους αριθμούς με ένα «κόσκινο»: Το κόσκινο του Ερατοσθένη κρατάει όλους τους σύνθετους αριθμούς και αφήνει να περάσουν όλοι οι πρώτοι. Για να βρούμε τους πρώτους αριθμούς, εργαζόμαστε ως εξής: 1. Αφήνουμε απέξω το 1 (είπαμε: δεν είναι ούτε πρώτος, ούτε σύνθετος).  2. Παίρνουμε τον επόμενο αριθμό (το 2). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του. 3. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 3). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν έχουν σβηστεί από πριν, ως πολλαπλάσια του 2). 4. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 5). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα έχουν σβηστεί από πριν). 5. Παίρνουμε τον επόμενο αριθμό που έμεινε (το 7). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν είναι σβησμένα από πριν). Με τον ίδιο τρόπο συνεχίζουμε για πάντα (αφού οι αριθμοί δεν τελειώνουν ποτέ)!    Αν όμως θέλουμε να βρούμε τους πρώτους αριθμούς μέχρι το 120 (όπως κάνουμε τώρα), δεν χρειάζεται να προχωρήσουμε παραπάνω από το 7, αφού...  ...οι αριθμοί που έχουν μείνει, (αυτοί που είναι μέσα στα κυκλάκια) είναι οι πρώτοι αριθμοί.  Οι πρώτοι αριθμοί μέχρι το 120 δίνονται παρακάτω: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113. Γεννάται λοιπόν το ερώτημα: Πόσοι είναι οι πρώτοι αριθμοί; Την απάντηση έδωσε ο Ευκλείδης στα Στοιχεία (πρόταση ΙΧ.20) που αποδεικνύει ότι το πλήθος τους είναι άπειρο. Η απόδειξη παραφράζεται εδώ και είναι η εξής: Εξετάστε οποιαδήποτε πεπερασμένη λίστα πρώτων αριθμών \(p_1, p_2 , ..., p_n\). Θα αποδειχθεί, ότι υπάρχει τουλάχιστον ένας πρόσθετος πρώτος αριθμός, που δεν υπάρχει στη λίστα. Έστω \(P\) το γινόμενο όλων των πρώτων αριθμών στη λίστα, δηλ.  \[P =p_1 \cdot p_2 \cdot  ... \cdot  p_n\].   Ας είναι \(q = P + 1\). Τότε ο \(q\) είναι είτε πρώτος ή όχι: •	Εάν ο \(q\) είναι πρώτος, τότε υπάρχει τουλάχιστον ένας ακόμη πρώτος, που δεν περιλαμβάνεται στη λίστα. •	Εάν ο \(q\) δεν είναι πρώτος, τότε κάποιος πρώτος παράγοντας \(p\) διαιρεί τον \(q\). Εάν αυτός ο παράγοντας \(p\) ήταν στη λίστα μας, τότε θα διαιρούσε το \(P\) (αφού το \(P\) είναι το γινόμενο κάθε αριθμού στη λίστα). Αλλά ο \(p\) διαιρεί επίσης το \(P + 1 = q\), όπως μόλις αναφέρθηκε. Εάν ο \(p\) διαιρεί το P και το q, τότε το p πρέπει επίσης να διαιρεί τη διαφορά των δύο αριθμών, που είναι \( (P + 1) - P = 1\). Δεδομένου ότι κανένας πρώτος αριθμός δεν διαιρεί το \(1\), ο \(p\) δεν μπορεί να είναι στη λίστα. Αυτό σημαίνει, ότι υπάρχει τουλάχιστον ένας ακόμη πρώτος αριθμός πέραν εκείνων της λίστας. Αυτό αποδεικνύει, ότι για κάθε πεπερασμένη λίστα πρώτων αριθμών, υπάρχει ένας πρώτος αριθμός, που δεν βρίσκεται στη λίστα. Άρα οι πρώτοι αριθμοί είναι άπειροι στο πλήθος. Η απόδειξη αυτή του Ευκλείδη θεωρείται από τις κομψότερες αποδείξεις στην ιστορία των μαθηματικών.
Το κόσκινο του Ερατοσθένη: Από το βιβλίο Μαθηματικών της Α΄ Γυμνασίου, εκδόσεις Διόφαντος, 2023

Για να βρούμε τους πρώτους αριθμούς, εργαζόμαστε ως εξής:

1. Αφήνουμε απέξω το 1 (είπαμε: δεν είναι ούτε πρώτος, ούτε σύνθετος).

2. Παίρνουμε τον επόμενο αριθμό (το 2). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του.

3. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 3).
Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν έχουν σβηστεί από πριν, ως πολλαπλάσια του 2).

4. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 5).
Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα έχουν σβηστεί από πριν).

5. Παίρνουμε τον επόμενο αριθμό που έμεινε (το 7).
Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν είναι σβησμένα από πριν).

Με τον ίδιο τρόπο συνεχίζουμε για πάντα (αφού οι αριθμοί δεν τελειώνουν ποτέ)!

 

Πρώτος καλείται ένας φυσικός αριθμός που διαιρείται μόνο με το 1 και τον εαυτό του. Για παράδειγμα οι αριθμοί 2, 3, 11, 17 είναι πρώτοι. Ένας αριθμός που δεν είναι πρώτος καλείται σύνθετος. Για παράδειγμα, ο αριθμός 9 είναι σύνθετος, αφού εκτός της μονάδας και του εαυτού του έχει διαιρέτη και το 3. Επειδή το 1 έχει μόνο έναν διαιρέτη (το 1, που είναι και ο εαυτός του), δεν είναι ούτε πρώτος ούτε σύνθετος αριθμός. Το 2 είναι ο μοναδικός άρτιος πρώτος, ενώ όλοι οι υπόλοιποι πρώτοι αριθμοί είναι περιττοί. Μπορούμε να βρούμε όλους τους πρώτους αριθμούς με ένα «κόσκινο»: Το κόσκινο του Ερατοσθένη κρατάει όλους τους σύνθετους αριθμούς και αφήνει να περάσουν όλοι οι πρώτοι. Για να βρούμε τους πρώτους αριθμούς, εργαζόμαστε ως εξής: 1. Αφήνουμε απέξω το 1 (είπαμε: δεν είναι ούτε πρώτος, ούτε σύνθετος).  2. Παίρνουμε τον επόμενο αριθμό (το 2). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του. 3. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 3). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν έχουν σβηστεί από πριν, ως πολλαπλάσια του 2). 4. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 5). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα έχουν σβηστεί από πριν). 5. Παίρνουμε τον επόμενο αριθμό που έμεινε (το 7). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν είναι σβησμένα από πριν). Με τον ίδιο τρόπο συνεχίζουμε για πάντα (αφού οι αριθμοί δεν τελειώνουν ποτέ)!    Αν όμως θέλουμε να βρούμε τους πρώτους αριθμούς μέχρι το 120 (όπως κάνουμε τώρα), δεν χρειάζεται να προχωρήσουμε παραπάνω από το 7, αφού...  ...οι αριθμοί που έχουν μείνει, (αυτοί που είναι μέσα στα κυκλάκια) είναι οι πρώτοι αριθμοί.  Οι πρώτοι αριθμοί μέχρι το 120 δίνονται παρακάτω: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113.



Αν όμως θέλουμε να βρούμε τους πρώτους αριθμούς μέχρι το 120 (όπως κάνουμε τώρα), δεν χρειάζεται να προχωρήσουμε παραπάνω από το 7, αφού...

...οι αριθμοί που έχουν μείνει, (αυτοί που είναι μέσα στα κυκλάκια) είναι οι πρώτοι αριθμοί.

 

Οι πρώτοι αριθμοί μέχρι το 120 δίνονται παρακάτω:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113.


Γεννάται λοιπόν το ερώτημα: Πόσοι είναι οι πρώτοι αριθμοί; Την απάντηση έδωσε ο Ευκλείδης στα "Στοιχεία" του (Πρόταση ΙΧ.20) αποδεικνύοντας ότι το πλήθος τους είναι άπειρο. Η απόδειξη παραφράζεται εδώ και είναι η εξής:

Εξετάστε οποιαδήποτε πεπερασμένη λίστα πρώτων αριθμών p1, p2 , ... , pn. Θα αποδειχθεί, ότι υπάρχει τουλάχιστον ένας πρόσθετος πρώτος αριθμός, που δεν υπάρχει στη λίστα. Έστω P το γινόμενο όλων των πρώτων αριθμών στη λίστα, δηλ. 

P =p1 · p2 ·  ... ·  pn 

 Ας είναι q = P + 1. Τότε ο q είναι είτε πρώτος ή όχι:

  • Εάν ο q είναι πρώτος, τότε υπάρχει τουλάχιστον ένας ακόμη πρώτος, που δεν περιλαμβάνεται στη λίστα.
  • Εάν ο q δεν είναι πρώτος, τότε κάποιος πρώτος παράγοντας p διαιρεί τον q. Εάν αυτός ο παράγοντας p ήταν στη λίστα μας, τότε θα διαιρούσε το P (αφού το P είναι το γινόμενο κάθε αριθμού στη λίστα). Αλλά ο p διαιρεί επίσης το P + 1 = q, όπως μόλις αναφέρθηκε. Εάν ο p διαιρεί το P και το q, τότε το p πρέπει επίσης να διαιρεί τη διαφορά των δύο αριθμών, που είναι  (P + 1) - P = 1. Δεδομένου ότι κανένας πρώτος αριθμός δεν διαιρεί το 1, ο p δεν μπορεί να είναι στη λίστα. Αυτό σημαίνει, ότι υπάρχει τουλάχιστον ένας ακόμη πρώτος αριθμός πέραν εκείνων της λίστας.

Αυτό αποδεικνύει ότι για κάθε πεπερασμένη λίστα πρώτων αριθμών, υπάρχει ένας πρώτος αριθμός, που δεν βρίσκεται στη λίστα. Άρα οι πρώτοι αριθμοί είναι άπειροι σε πλήθος.

Η απόδειξη αυτή του Ευκλείδη θεωρείται από τις κομψότερες αποδείξεις στην ιστορία των μαθηματικών.

 

Στοιχεία
Ένα κομμάτι παπύρου των Στοιχείων του Ευκλείδη, που χρονολογείται περίπου στο 75-125 μ.Χ.



Πηγές: 

Σημειώσεις Θεωρίας Αριθμών, Α. Θωμά, Πανεπιστήμιο Ιωαννίνων

Wikipedia.org


Δευτέρα 30 Σεπτεμβρίου 2024

Γιατί ο περιοδικός δεκαδικός 0,999... ισούται με 1;


Στην ταινία γερμανικής παραγωγής "Στο γραφείο των καθηγητών" (Das Lehrerzimmer, 2023), η δασκάλα θέτει το εξής πρόβλημα στους δωδεκάχρονους μαθητές της:


Das Lehrerzimmer, 2023

Ο περιοδικός δεκαδικός αριθμός \(0,\bar{9}=0,999...\) (άπειρα εννιάρια) ισούται ή όχι με το \(1\);


Οι περισσότεροι μαθητές πιστεύουν ότι υπάρχει αριθμός μεταξύ του 0,999... και του 1. Μετά από συζήτηση, ο Όσκαρ γράφει στον πίνακα την εξής απάντηση:


Das Lehrerzimmer, 2023

Γνωρίζω ότι

\[ \frac{1}{9} = 1:9 = 0,111... \]

Έτσι,

\[0,\bar{1}=\frac{1}{9}\]

Πολλαπλασιάζοντας και τα δύο μέλη της ισότητας με 9, παίρνουμε:

\[ 0,\bar{9}=9 \cdot \frac{1}{9}\]

άρα

\[ 0,\bar{9}=1\]


Das Lehrerzimmer, 2023



Η εξήγηση βασίζεται στο ότι τα εννιάρια στον περιοδικό δεκαδικό 0,999... είναι άπειρα. Δείτε παρακάτω τη μαθηματική απόδειξη.


Θέτουμε \( x=0,999... (1) \)

Πολλαπλασιάζουμε τα δύο μέλη της ισότητας με 10, οπότε \( 10x=9,999... (2) \)

Αφαιρούμε κατά μέλη τις ισότητες, \( (2)-(1) \) και έχουμε 

\( 10x - x = 9,999... - 0,999... \Leftrightarrow \)

\( 9x = 9 \Leftrightarrow \)

\( x = 1 \)

Άρα \( 0,999...  = 1 \).

 

Τρίτη 31 Οκτωβρίου 2023

"Μαθηματικά στο στοιχειωμένο σπίτι"


Μαθηματικά στο στοιχειωμένο σπίτι - εξώφυλλο

Κάθε πόρτα στο στοιχειωμένο σπίτι κρύβει κι από ένα μυστήριο, έναν μαθηματικό γρίφο που μπορεί να λυθεί εύκολα με τις απλές εξισώσεις της άλγεβρας.


Μαθηματικά στο στοιχειωμένο σπίτι - σελίδα από το βιβλίο

Τα "Μαθηματικά στο στοιχειωμένο σπίτι" θα βοηθήσουν τους μαθητές να χτίσουν μια βάση στα μαθηματικά, αλλά και να ξεδιαλύνουν τις βασικές έννοιες της άλγεβρας, όπως είναι η ισότητα, η εξίσωση, η μεταβλητή και ο άγνωστος.


Μαθηματικά στο στοιχειωμένο σπίτι - σελίδα από το βιβλίο


Ένα βιβλίο γεμάτο... ανατριχιαστικές εκπλήξεις και διασκεδαστικά παιχνίδια άλγεβρας από τον καταξιωμένο εκπαιδευτικό David A. Adler και τις εκδόσεις Κλειδάριθμος. Είναι κατάλληλο για παιδιά ηλικιών 8 ετών και άνω, ανάλογα πάντα με τη γνωστική ανάπτυξη και τα ενδιαφέροντα του κάθε παιδιού. 

Ο David A. Adler έχει συγγράψει περισσότερα από 300 παιδικά βιβλία, ενώ πριν γίνει συγγραφέας παιδικών βιβλίων, υπήρξε δάσκαλος μαθηματικών στις Ηνωμένες Πολιτείες Αμερικής.


Δευτέρα 19 Ιουνίου 2023

Η τελευταία διάλεξη του Gilbert Strang


Στις προπτυχιακές τους σπουδές, όχι μόνο στο Μαθηματικό, αλλά και σε πάρα πολλά τμήματα θετικών επιστημών ή μηχανικών, οι φοιτητές διδάσκονται το μάθημα της Γραμμικής Άλγεβρας.

Ο Gilbert Strang (γεν. 1934) δίδαξε Γραμμική Άλγεβρα για 61 χρόνια και εκατομμύρια άνθρωποι στον κόσμο έμαθαν από αυτόν τον σπουδαίο καθηγητή, είτε μέσω των όμορφων διαλέξεών του, ή μελετώντας τα βιβλία του. Οι βιντεοσκοπημένες διαλέξεις του είναι πολύ δημοφιλείς στο YouTube και το κανάλι MIT OpenCourseWare. Αυτή είναι η τελευταία διάλεξη που δίνει (Μάιος 2023), στο MIT της Μασαχουσέτης, σε ηλικία 88(!) ετών.




Το βιβλίο του Gilbert Strang "Γραμμική Άλγεβρα και εφαρμογές", σε μετάφραση Π. Πάμφιλου από τις Πανεπιστημιακές Εκδόσεις Κρήτης
Το βιβλίο του Gilbert Strang "Γραμμική Άλγεβρα και εφαρμογές", σε μετάφραση Π. Πάμφιλου από τις Πανεπιστημιακές Εκδόσεις Κρήτης


Μπορείτε να παρακολουθήσετε μια πλήρη playlist διαλέξεων του Gilbert Strang πάνω σε όλη σχεδόν τη Γραμμική Άλγεβρα εδώ... 

 

Παρασκευή 14 Απριλίου 2023

Καλό Πάσχα!


HAPPY EASTER
Πηγή εικόνας



Το φετινό Πάσχα ας είναι μια ευκαιρία να κοιτάξουμε μπροστά με ελπίδα και γύρω μας με αγάπη! 

Καλό Πάσχα σε όλους και Καλή Ανάσταση! 


Δευτέρα 24 Μαΐου 2021

Γρίφος: Φυσική τριάδα

 


Κάποιος υποστηρίζει ότι γνωρίζει τρεις φυσικούς αριθμούς x, y και z
που ικανοποιούν την εξίσωση
28x + 30y + 31z = 365.
Έχει δίκιο;;;


Πηγή γρίφου:

ΜΑΘΗΜΑΤΙΚΟΙ ΓΡΙΦΟΙ 1 - 150 προβλήματα από τη στήλη "Σπαζοκεφαλιές" του περιοδικού Quantum, εκδόσεις "Κάτοπτρο", 1999

Τετάρτη 15 Ιουλίου 2020

Προσεταιριστική ιδιότητα: Πόσο προφανής είναι;


Είναι προφανές ότι ισχύει
63 + 48 = 27 + 84 ;

Πρόκειται για μια ορθή μαθηματική πρόταση, χωρίς ενδιαφέρον, που επαληθεύεται σε δευτερόλεπτα. Είναι όμως προφανής; Αν "προφανής" σημαίνει ότι ο λόγος για τον οποίο ισχύει είναι σαφώς κατανοητός, χωρίς ανάγκη επαλήθευσης, τότε οι περισσότεροι θα απαντούσαν αρνητικά.

Είναι, τώρα, προφανές ότι
(27 + 36) + 48 = 27 + (36 + 48) ;

Ασφαλώς, για την πλειοψηφία: η ενστικτώδης (και ορθή) αντίδραση είναι ότι ο τρόπος με τον οποίο "συμμαζεύουμε" τους όρους ενός αθροίσματος δεν μπορεί να επηρεάσει το αποτέλεσμα. Ο έγκυρος μαθηματικός όρος για το συμμάζεμα αυτό και την τοποθέτηση των αριθμών σε "παρέες" είναι "προσεταιρίζουμε" και η ενστικτώδης αντίδραση είναι η αποδοχή της προσεταιριστικής ιδιότητας της πρόσθεσης για πραγματικούς αριθμούς:

προσεταιριστική ιδιότητα της πρόσθεσης

Την προσεταιριστική ιδιότητα διαθέτει και η πράξη του πολλαπλασιασμού στους πραγματικούς αριθμούς:

προσεταιριστική ιδιότητα του πολλαπλασιασμού

Εκτός, όμως, από το σύνολο των πραγματικών αριθμών εφοδιασμένο με τις πράξεις τις πρόσθεσης και του πολλαπλασιασμού, οι μαθηματικοί ενδιαφέρθηκαν να ορίσουν και άλλα σύνολα, πιο αφηρημένα, για πολλούς και διάφορους σκοπούς. Η Γραμμική Άλγεβρα ασχολείται με διάφορα είδη πράξεων (όπως η πρόσθεση ή ο πολλαπλασιασμός) για διάφορα είδη αντικειμένων (όχι αναγκαστικά πραγματικούς αριθμούς). Μας ενδιαφέρει αν η πράξη με την οποία έχει εφοδιαστεί ένα σύνολο είναι, μεταξύ άλλων, προσεταιριστική. 

Προσεταιριστική πράξη
Μια διμελής πράξη ✱ σ' ένα σύνολο S λέγεται προσεταιριστική, αν (α ✱ β) ✱ γ = α ✱ (β ✱ γ), για κάθε α, β, γ ∈ S.


Είναι άδικο να παραβλέψουμε την προσεταιριστική ιδιότητα ως κάτι τετριμμένο. Η προσεταιριστικότητα της πράξης μπορεί να μην ισχύει πάντα, αλλά, ακόμη κι αν ισχύει, δεν είναι και τόσο προφανής. Στον κόσμο της Γραμμικής Άλγεβρας, αν και οι μη προσεταιριστικές πράξεις είναι σπάνιες, πράξεις για τις οποίες η προσεταιριστικότητα δεν είναι αυτονόητη, συναντώνται συχνότερα.


Κουίζ:

1. Ορίζουμε μια νέα πρόσθεση στους πραγματικούς αριθμούς, συμβολιζόμενη ως ⊕, όπου:
α⊕β = 2α + 2β

Είναι η ⊕ προσεταιριστική;

Σχόλιο: Το + στο δεύτερο μέλος σημαίνει τη συνήθη πρόσθεση.


2. Στο σύνολο {0, 1, 2} που αποτελείται από τρία στοιχεία, ορίζουμε έναν νέο πολλαπλασιασμό, που τον συμβολίζουμε με ⊗. Στον παρακάτω πίνακα πολλαπλασιασμού βλέπουμε πώς ορίζεται ο πολλαπλασιασμός :

 ⊗ 0 1 2
 0 0 0 0
 1 0 1 2
 2 0 2 1

Είναι η  προσεταιριστική;

Σχόλιο: Η πράξη αυτή καλείται στη Γραμμική Άλγεβρα "πολλαπλασιασμός modulo 3" (mod3, μοδίω 3), ενώ το σύνολο {0, 1, 2} καλείται "οι ακέραιοι modulo 3" και συμβολίζεται ως  ℤ.



Πηγές:
John B. Fraleigh (2003, 4η έκδοση). Εισαγωγή στην Άλγεβρα (μετ. Γιαννόπουλος). Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο (Το πρωτότυπο έργο δημοσιεύθηκε το 1967).
Paul Halmos (2012). Προβλήματα Γραμμικής Άλγεβρας (μετ. Τουμάσης & Γραμματίκας). Ευρύαλος Απόλλων, Τρίκαλα (Το πρωτότυπο έργο δημοσιεύθηκε το 1995).

Πέμπτη 7 Μαΐου 2020

Αυτό που δεν πέτυχε ο μαρξισμός, το πέτυχε η Άλγεβρα!


Η Άλγεβρα με τη Θεωρία Ομάδων κατάφερε ό,τι δεν έχει καταφέρει ο... μαρξισμός: Την εξίσωση των τάξεων (ή κλάσεων)!

Αυτό που δεν πέτυχε ο μαρξισμός, το πέτυχε η Άλγεβρα!
Φωτογραφία από τις σημειώσεις που κρατούσα στο μεταπτυχιακό μάθημα "Άλγεβρα Ι" με καθηγητή τον Ν.Μαρμαρίδη, 2014

Διαβάστε για την εξίσωση των τάξεων (ή κλάσεων) εδώ...

Τετάρτη 29 Απριλίου 2020

Γρίφος: Οι μυστηριώδεις πράξεις


Στην Άλγεβρα, μπορούμε με ένα οποιοδήποτε σύμβολο να συμβολίσουμε μια πράξη ή μια σειρά πράξεων που ορίσαμε μεταξύ δύο αριθμών. Αρκεί η πράξη αυτή να είναι καλά ορισμένη, δηλαδή το αποτέλεσμα της πράξης μεταξύ των δύο αριθμών να ορίζεται μονοσήμαντα και να ανήκει στο ίδιο σύνολο αριθμών με τους δύο αρχικούς.

Βρείτε ποια ή ποιες πράξεις ορίζονται με το σύμβολο ⨀ κι έπειτα βρείτε τον αριθμό στη θέση του ερωτηματικού.



Σάββατο 8 Φεβρουαρίου 2020

Μαγικά ή μαθηματικά;


Ένας καθηγητής Μαθηματικών είπε στους μαθητές του:

  • Σκεφτείτε έναν αριθμό.
  • Τώρα διπλασιάστε τον.
  • Στο αποτέλεσμα, να προσθέσετε τον αριθμό 10.
  • Το άθροισμα που βρήκατε να το διαιρέσετε με το 2.
  • Από το πηλίκο, να αφαιρέσετε τον αριθμό που σκεφτήκατε αρχικά.
Κάθε μαθητής πρέπει να έχει βρει αποτέλεσμα τον αριθμό 5, ανεξάρτητα από ποιον αριθμό σκέφτηκε αρχικά.

Ο μαθηματικός δεν διάβαζε το μυαλό των μαθητών του... Πώς εξηγείται όμως το ότι ήξερε το τελικό αποτέλεσμα;



Έστω ότι x είναι ο αριθμός που σκέφτηκε κάποιος μαθητής. 
Τότε, αν τον διπλασιάσει γίνεται 2x. 
Στο αποτέλεσμα προσθέτει το 10 και προκύπτει το 2x + 10. 
Τον αριθμό που βρίσκει τον διαιρεί με το 2, οπότε βρίσκει (2x + 10):2. 
Αφαιρεί τον αριθμό που σκέφτηκε αρχικά και βρίσκει αποτέλεσμα (2x + 10):2 - x. 
O μαθηματικός ισχυρίζεται ότι το αποτέλεσμα πρέπει να είναι ίσο με 5, οπότε προκύπτει η εξίσωση:

(2x + 10):2 - x = 5 ⇔
2x + 10 - 2x = 10 ⇔
2x - 2x = 10 - 10 ⇔
0x = 0

H εξίσωση είναι ταυτότητα, άρα επαληθεύεται για κάθε αριθμό που μπορεί να σκέφτηκαν οι μαθητές.


Δεν είναι μαγικά... είναι απλά μαθηματικά!

Τρίτη 1 Ιανουαρίου 2019

Καλή Χρονιά!

Καλή και δημιουργική χρονιά σε όλους!!!


Happy New Year


Παρακάτω σας έχω κι έναν μαθηματικό γρίφο... για να ξεκινήσει καλά η νέα χρονιά!!! ;)


Γρίφος


Παρασκευή 12 Οκτωβρίου 2018

"Αριθμητική με το νου"


Ο Nikolay Bogdanov-Belsky (1868 - 1945) ήταν Ρώσος ζωγράφος που ακολουθούσε τα ρεύματα του Ρεαλισμού και του Ιμπρεσιονισμού. Πολλά από τα έργα του έχουν ηθογραφικό χαρακτήρα και αποτελούνται από πορτρέτα, ιμπρεσιονιστικά τοπία και απεικονίσεις της καθημερινής ζωής, με κύριο στοιχείο τα παιδιά και την εκπαίδευση τους.


To 1895, o Nikolay Bogdanov-Belsky ζωγράφισε τον πίνακα «Αριθμητική με το νου. Στο δημόσιο σχολείο του S. Rachinsky», ή κατ' άλλους, «Ένα δυσνόητο πρόβλημα». Ο δάσκαλος που απεικονίζεται είναι ο S. Rachinsky, καθηγητής φυσικής, ο οποίος εγκατέλειψε το πανεπιστήμιο για να υπηρετήσει ως απλός δάσκαλος σε κάποιο χωριό.

Ο πίνακας


Οι περισσότεροι, όμως, όταν θαυμάζουν το έργο τέχνης, παραβλέπουν το πρόβλημα που είναι γραμμένο στον πίνακα της τάξης... Το πρόβλημα ζητάει τον υπολογισμό της αριθμητικής παράστασης:

(10²+11²+12²+13²+14²)/365

Μπορείτε να κάνετε τον υπολογισμό με το μυαλό σας;


Πηγές:
Yakov Perelman, Διασκεδαστικά Μαθηματικά, Εκδόσεις Κάτοπτρο, 2001
https://twitter.com/fermatslibrary

Παρασκευή 1 Ιουνίου 2018

1/6/2018: Παγκόσμια ημέρα του χρυσού αριθμού «φ»... (Μέρος 1º - Γνωριμία με τον αριθμό «φ»)

Τι κοινό έχουν οι ζωγραφικοί πίνακες της Αναγέννησης, το κουνουπίδι, η αναπαραγωγή των κουνελιών και μια πιστωτική κάρτα; Η απάντηση είναι ο αριθμός 1,61803398874989484..., ο "χρυσός αριθμός", ή "χρυσή αναλογία". Τα δεκαδικά του ψηφία είναι άπειρα και η ακολουθία τους δεν επαναλαμβάνεται. Μάθετε τι τον καθιστά τόσο μαγικό!


Χρυσή τομή


Όπως ο π (3,14) εκφράζει το πιο τέλειο γεωμετρικό σχήμα, τη σφαίρα, έτσι και ο φ (1,618) είναι ο αριθμός της «ομορφιάς». Ο μοναχός του 15ου αιώνα Luca Pacioli, επηρεασμένος από την αντίληψη της εποχής ότι οι νέες γνώσεις της επιστήμης έπρεπε να ενταχθούν στο εκκλησιαστικό δόγμα, τον ονόμασε «Θεία Αναλογία» («Divina Proportione»). Ο Leonardo DaVinci τον ονόμασε «Χρυσό Αριθμό». Αιώνες αργότερα, ο μαθηματικός Mark Barr θα τον συμβόλιζε με το ελληνικό γράμμα φ, προς τιμήν του γλύπτη Φειδία, ο οποίος ήταν από τους πρώτους που δημιουργούσαν έργα με βάση τον αριθμό αυτό.

Ο άνθρωπος του Βιτρούβιου

ΤΑ ΕΥΘΥΓΡΑΜΜΑ ΤΜΗΜΑΤΑ ΤΟΥ ΕΥΚΛΕΙΔΗ

Η αφετηρία είναι γεωμετρική. Ο Ευκλείδης στα «Στοιχεία» έδωσε τον πρώτο γραπτό ορισμό της χρυσής τομής, την οποία ονόμασε «άκρος και μέσος λόγος».

Ο Ευκλείδης παίρνει ένα ευθύγραμμο τμήμα και το διαιρεί σε δύο τμήματα. Η χρυσή τομή είναι εκείνο το σημείο που χωρίζει το ευθύγραμμο τμήμα στα δυο τμήματα a, b, έτσι ώστε  ο 
λόγος του αθροίσματος τους a+b προς τη μεγαλύτερη ποσότητα είναι ίσος με το λόγο της μεγαλύτερης ποσότητας προς τη μικρότερη.
Γεωμετρικός ορισμός της χρυσής τομής

Ο λόγος αυτός λέγεται «χρυσός λόγος» και σύμφωνα με τον ορισμό του Ευκλείδη, υπολογίζεται ότι έχει αριθμητική τιμή 1,618..., δηλαδή ότι το μεγαλύτερο τμήμα θα έχει πάντα 1,618... φορές μεγαλύτερο μήκος από το μικρότερο. 



ΧΡΥΣΟ ΟΡΘΟΓΩΝΙΟ ΚΑΙ ΧΡΥΣΗ ΕΛΙΚΑ

Ένα ορθογώνιο παραλληλόγραμμο λέγεται «χρυσό», όταν το πηλίκο της μεγαλύτερης προς τη μικρότερη πλευρά του ισούται με φ. 

χρυσό ορθογώνιο
Αυτό το ορθογώνιο έχει μια ιδιότητα που το ξεχωρίζει από όλα τα άλλα: αν αφαιρέσουμε από τη μια πλευρά το μεγαλύτερο δυνατό τετράγωνο, απομένει ένα καινούργιο ορθογώνιο, που είναι επίσης χρυσό, και αυτό μπορεί να συνεχιστεί επ’ άπειρον. 

Αν ενώσει κανείς με μια καμπύλη τις κορυφές όλων αυτών των ορθογωνίων, που είναι και χρυσές τομές, σχηματίζεται μια λογαριθμική έλικα, η «χρυσή έλικα».

χρυσή έλικα

Αν θέλει κανείς να δει ένα χρυσό ορθογώνιο αρκεί να κοιτάξει μια πιστωτική κάρτα, το σχήμα της οποίας είναι ακριβώς αυτό. 


ΧΡΥΣΟ ΤΡΙΓΩΝΟ

Χρυσό λέγεται κάθε ισοσκελές  τρίγωνο στο οποίο ο λόγος της μεγάλης πλευράς προς τη μικρή θα είναι ίσος με φ. Κάθε ισοσκελές με γωνία κορυφής 36˚ είναι χρυσό.
χρυσό τρίγωνο


Χρυσή έλικα σε χρυσό τρίγωνο


ΤΟ ΣΥΜΒΟΛΟ ΤΩΝ ΠΥΘΑΓΟΡΕΙΩΝ

Η χρυσή αναλογία ήταν γνωστή στους Πυθαγορείους. Το σύμβολο της αδελφότητας των Πυθαγορείων ήταν το «πεντάγραμμο» ή «πεντάλφα», το αστέρι δηλαδή που σχηματίζεται από τις πέντε διαγωνίους του κανονικού πενταγώνου. Η χρυσή αναλογία εμφανίζεται στις πλευρές του αστεριού. 
Πεντάγραμμο ή πεντάλφα

Αποδεικνύεται ότι κάθε πλευρά του «πενταγράμμου» διαιρεί τις δύο άλλες σε χρυσή τομή.
οι λόγοι ισούνται με φ

Ακόμη, το πηλίκο του εμβαδού του κανονικού πενταγώνου με κορυφές τις άκρες της πεντάλφα προς το εμβαδόν του κανονικού πενταγώνου που σχηματίζεται εντός του αστεριού ισούται με φ.
Οι διαγώνιοι του κανονικού πενταγώνου

Ο λόγος των εμβαδών ισούται με φ



ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΑΝΑΠΑΡΑΓΩΓΗΣ ΤΩΝ ΚΟΥΝΕΛΙΩΝ

Ο Leonardo Pisano Fibonacci (1170-1240) γεννήθηκε στην Πίζα. Ο πατέρας του Leonardo, Guilielmo Bonacci, ήταν γραμματέας της Δημοκρατίας της Πίζας στη Βορειοαφρικανική πόλη Bugia. Ο Fibonacci μεγάλωσε εκεί και η εκπαίδευσή του επηρεάστηκε σημαντικά από τους Μαυριτανούς αλλά και από τα ταξίδια που έκανε αργότερα κατά μήκος της Μεσογειακής ακτής (Αίγυπτο, Συρία, Ελλάδα, Σικελία και Προβηγκία). Έτσι, μελέτησε και έμαθε τις μαθηματικές τεχνικές και τα αριθμητικά συστήματα που είχαν υιοθετηθεί σε εκείνες τις περιοχές.


Ο Φιμπονάτσι

Γύρω στο 1200, ο Fibonacci επέστρεψε στην Πίζα, όπου για τα επόμενα 25 χρόνια επεξεργαζόταν τις δικές του μαθηματικές συνθέσεις. Στο βιβλίο του με τίτλο "Liber Abaci",  εισήγαγε την έννοια της ακολουθίας στα Μαθηματικά της Δυτικής Ευρώπης. Σ’ έναν περίφημο, πλέον, συλλογισμό, προσπάθησε να υπολογίσει την ταχύτητα αναπαραγωγής των κουνελιών στη γη, κάτω από ιδανικές συνθήκες. Ο Fibonacci υπέθεσε ότι έχουμε 1 ζευγάρι κουνελιών, το οποίο αρχίζει να αναπαράγεται από τον πρώτο μήνα και μετά από κάθε μήνα κύησης, φέρνει στον κόσμο ένα ακόμη ζευγάρι. Κάθε νέο ζευγάρι είναι έτοιμο να τεκνοποιήσει 1 μήνα μετά τη γέννησή του, γεννά 1 μήνα μετά και συνεχίζει να αναπαράγεται με τον ίδιο ρυθμό. Πόσα ζευγάρια κουνελιών θα έχουμε στο τέλος του πρώτου χρόνου;

1. Αρχικά υπάρχει ένα ζευγάρι κουνελιών.

2. Στο τέλος του 1ου μήνα το αρχικό ζευγάρι είναι έτοιμο να ζευγαρώσει, αλλά υπάρχει μόνο αυτό.
3. Στο τέλος του 2ου μήνα έχουμε το αρχικό ζευγάρι και το πρώτο ζευγάρι παιδιών του. Συνολικά 2 ζευγάρια κουνελιών. 
4. Στο τέλος του 3ου μήνα έχουμε το αρχικό ζευγάρι, το πρώτο ζευγάρι παιδιών του, (που είναι έτοιμα κι αυτά να τεκνοποιήσουν) και ένα δεύτερο ζευγάρι παιδιών του. Συνολικά 3 ζευγάρια κουνελιών. 
5. Στο τέλος του 4ου μήνα έχουμε το αρχικό ζευγάρι, το πρώτο ζευγάρι παιδιών και το πρώτο δικό του ζευγάρι παιδιών, το δεύτερο ζευγάρι παιδιών, που είναι έτοιμα να τεκνοποιήσουν, και ένα νέο, τρίτο ζευγάρι παιδιών. Συνολικά 5 ζευγάρια κουνελιών. 


Τα ζευγάρια των κουνελιών

Με βάση αυτή την υπόθεση, ο Fibonacci ανακάλυψε ότι τα ζευγάρια των κουνελιών αυξάνονταν κάθε μήνα σύμφωνα με μια άπειρη ακολουθία αριθμών: 
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 114, 233, 377, 610...

Μπορείτε να εντοπίσετε το μοτίβο που κρύβεται πίσω από αυτή την αλληλουχία; 


Οι αριθμοί αυτοί ονομάστηκαν «αριθμοί Fibonacci» και αποτελούν τη λεγόμενη «Ακολουθία Fibonacci». Εκτός από τους δύο πρώτους αριθμούς που είναι το 1, κάθε αριθμός της ακολουθίας Fibonacci ισούται με το άθροισμα των δύο προηγουμένων: 
αν+2 = αν+1 + αν

Αν και υπάρχουν αναφορές ότι αυτή η ακολουθία είχε αναφερθεί περίπου μισό αιώνα πριν, από τους Ινδούς Gospala και Hemachandra, ο Fibonacci συνάντησε αυτή την ακολουθία μελετώντας την Μεγάλη Πυραμίδα του Χέοπα στην Αίγυπτο, η οποία και είναι χτισμένη με βάση τον αριθμό  φ.

Όμως, τι σχέση έχει η ακολουθία Fibonacci με το χρυσό αριθμό; 

Κατασκευάζουμε μια ακολουθία με τους λόγους των διαδοχικών όρων της ακολουθίας Fibonacci.

ακολουθία

Μπορούμε να πάρουμε ένα κομπιουτεράκι και να κάνουμε τις διαιρέσεις. Θα διαπιστώσουμε πως όσο προχωράμε στην ακολουθία, το πηλίκο θα προσεγγίζει όλο και περισσότερο τον αριθμό φ.

π.χ.
5/3=1,66666666...
89/55=1,6181818...
377/233=1,618025751
987/610=1,618032787
46368/28657=1,618033988

Σε μαθηματικούς όρους, αυτό σημαίνει πως η ακολουθία των λόγων δύο διαδοχικών αριθμών Fibonacci έχει ως όριο τον αριθμό φ. Το συμπέρασμα αυτό αποδείχτηκε από τον μαθηματικό Robert Simpson το 1753, δηλαδή πεντέμιση αιώνες αργότερα από τον ορισμό της ακολουθίας από τον Fibonacci!

Εμβαθύνοντας λίγο στην Ανάλυση...

Όπως κάθε ακολουθία που προσδιορίζεται από αναδρομική σχέση, έτσι και η ακολουθία Fibonacci έχει έναν τύπο κλειστής μορφής, δηλαδή έναν γενικό τύπο που δίνει τον ν-οστό όρο. Αυτός είναι γνωστός ως τύπος του Binet:
ο τύπος του Μπινέ

Υπολογίζεται το όριο της ακολουθίας των λόγων δύο διαδοχικών όρων της F(n):
το όριο της ακολουθίας των λόγων δύο διαδοχικών όρων της Εφ του ν ισούται με τον αριθμό φ

Παρόμοια, οι αριθμοί Fibonacci προσεγγίζουν εντυπωσιακά και τη χρυσή έλικα. Παρακάτω βλέπουμε μια κάλυψη του επιπέδου με τετράγωνα, οι πλευρές των οποίων είναι διαδοχικοί αριθμοί Fibonacci.

κάλυψη του επιπέδου με τετράγωνα, οι πλευρές των οποίων είναι διαδοχικοί αριθμοί Φιμπονάτσι

Ενώνουμε κάθε φορά δύο απέναντι κορυφές των τετραγώνων γράφοντας τόξα κύκλων. Σχηματίζεται η έλικα (ή σπείρα) Fibonacci, η οποία αποτελεί προσέγγιση της χρυσής έλικας. 


Χρυσή έλικα


Η χρυσή αναλογία συνδέεται, δηλαδή, με τον πολλαπλασιασμό των κουνελιών, παρόλο που η Ακολουθία Fibonacci σχηματίστηκε ανεξάρτητα από την ευκλείδεια γεωμετρία. 



Ο φ ΚΑΙ Η ΑΛΓΕΒΡΑ

  • Υπολογισμός του φ:

Για να υπολογίσουμε την τιμή του φ, ξεκινάμε από τον ορισμό:
α συν β προς α ισούται με α προς β ισούται με φ
Απλοποιώντας το αριστερό κλάσμα και αντικαθιστώντας το b/a = 1/φ, παίρνουμε
α συν β προς α ισούται με 1 συν β προς α ισούται με 1 συν 1 προς φ
άρα,
1 συν 1 προς φ ισούται με φ
Πολλαπλασιάζοντας και τα δύο μέλη με φ, παίρνουμε: φ + 1 = φ2
επομένως προκύπτει η εξίσωση: φ2 – φ – 1 = 0
Χρησιμοποιώντας τη μέθοδο επίλυσης εξισώσεων 2ου βαθμού, με διακρίνουσα, βρίσκουμε:
φ ίσον 1 συν ρίζα 5 προς 2 ή φ ίσον 1 πλην ρίζα 5 προς 2

Επειδή το φ εκφράζει αναλογία μεταξύ θετικών ποσοτήτων, το φ είναι αναγκαστικά θετικό:
φ ίσον 1 συν ρίζα 5 προς 2, περίπου ίσο με 1,618

  • Ιδιότητες:

1) Αν ελαττώσουμε τον φ κατά 1 μονάδα, αντιστρέφεται!
Επειδή φ = 1 + 1/φ , προκύπτει ότι 
ιδιότητα του φ
2) Αν υψώσουμε τον φ στο τετράγωνο, αυξάνεται κατά 1 μονάδα!
Επειδή φ2 = 1 + φ, παίρνουμε 
ιδιότητα του φ
και αυτό μπορεί να συνεχιστεί επ’ άπειρον.

3) Ακόμα, για τον αριθμό φ ισχύει ότι:
  • φ = 1φ
  • φ2 = 1φ + 1
  • φ3 = 2φ + 1
  • φ4 = 3φ + 2
  • φ5 = 5φ + 3
  • φ6 = 8φ + 5 …
Παρατηρούμε, δηλαδή, ότι στις δυνάμεις του φ «κρύβεται» η ακολουθία Fibonacci!
Η παραπάνω έκφραση μπορεί να χρησιμοποιηθεί για την ανάλυση μεγάλων δυνάμεων φn σε έναν γραμμικό συνδυασμό του φ και του 1. Η σχέση που προκύπτει παράγει αριθμούς Fibonacci ως γραμμικούς συντελεστές:
φn =  F(n) φ + F(n-1)

4) Μια άλλη έκφραση του αριθμού φ βασισμένη μόνο στο ψηφίο του 5 είναι η παρακάτω και οφείλεται στον Erol Karazincir:
έκφραση του αριθμού φ


ΠΑΝΤΑΧΟΥ ΠΑΡΩΝ…

Το Σύμπαν δείχνει να τρέφει μια ιδιαίτερη αδυναμία για τον αριθμό φ με τα άπειρα δεκαδικά ψηφία. 

σπειροειδής γαλαξίας


(Συνεχίζεται...)

Πηγές:
Περιοδικό Focus
goldennumber.net
wikipedia.org
Πανεπιστημιακές σημειώσεις "Ευκλείδεια και μη Ευκλείδειες Γεωμετρίες" καθηγητή Χρ.Μπαϊκούση, 2011