Εμφάνιση αναρτήσεων με ετικέτα μαθηματικά και τηλεοπτικές σειρές. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα μαθηματικά και τηλεοπτικές σειρές. Εμφάνιση όλων των αναρτήσεων

Κυριακή 11 Ιανουαρίου 2026

Μαθηματικός έλυσε το «πρόβλημα της μετακίνησης του καναπέ» από τα «Φιλαράκια»

 

Από την κλασική σκηνή της μετακίνησης του καναπέ στα «Φιλαράκια», με τον Ρος να φωνάζει «Pivot!»
Από την κλασική σκηνή της μετακίνησης του καναπέ στη σειρά "Φιλαράκια", με τον Ρος να φωνάζει "Pivot!"
(Warner Bros. Television)


Το «πρόβλημα της μετακίνησης του καναπέ» (Moving Sofa Problem) είναι ένα κλασικό ανοιχτό πρόβλημα της γεωμετρίας, που διατυπώθηκε το 1966 από τον Leo Moser.

Η διατύπωση του προβλήματος:

Φανταζόμαστε έναν καναπέ (ένα επίπεδο σχήμα στο επίπεδο) που πρέπει να μετακινηθεί:

  • μέσα από έναν διάδρομο σχήματος Γ με σταθερό πλάτος 1,
  • χωρίς να ανασηκωθεί, να παραμορφωθεί ή να περάσει μέσα από τους τοίχους (επιτρέπεται μόνο μεταφορά και περιστροφή στο επίπεδο).

 

moving sofa problem

Το ερώτημα είναι:

Ποιο είναι το μέγιστο δυνατό εμβαδόν ενός καναπέ που μπορεί να μετακινηθεί επιτυχώς μέσα από έναν τέτοιο διάδρομο;


Εκτός από τη μαθηματική κοινότητα, το πρόβλημα αυτό έχει βρει θέση και στην ποπ κουλτούρα, χάρη στην γνωστή σκηνή από την κωμική σειρά «Τα φιλαράκια», όπου ο Ρος, η Ρέιτσελ και ο Τσάντλερ πασχίζουν να μεταφέρουν έναν καναπέ από τις σκάλες της πολυκατοικίας τους.




Λύνοντας το πρόβλημα...

Ο 31χρονος μαθηματικός δρ. Baek Jineon, ερευνητής στο Κορεατικό Ινστιτούτο Προηγμένων Σπουδών, έδωσε τα τέλη του 2024 οριστική λύση στο πρόβλημα, δημοσιεύοντας μία εργασία 119 σελίδων στη βάση arXiv και κερδίζοντας παγκόσμια αναγνώριση για μια απόδειξη που επιτεύχθηκε χωρίς τη χρήση υπολογιστών. Πώς ξεκίνησαν όμως οι προσπάθειες επίλυσης του Moving Sofa Problem?

 

Ο «καναπές του Gerver»

Το 1992, ο μαθηματικός Joseph Gerver πρότεινε ένα καμπυλόγραμμο σχήμα, γνωστό ως «καναπές του Gerver», με εμβαδόν περίπου 2.2195 τετραγωνικών μονάδων, ως πιθανή λύση. Ωστόσο, μέχρι πρότινος, κανείς δεν είχε καταφέρει να αποδείξει ότι δεν μπορούσε να υπάρχει κάποιο άλλο σχήμα με μεγαλύτερο εμβαδόν.


Ο «καναπές του Gerver»
Ο "καναπές του Gerver"


Σχετικά πρόσφατα, λοιπόν, και έπειτα από επτά χρόνια συστηματικής εργασίας, ο δρ. Baek απέδειξε ότι ο σχεδιασμός του Gerver είναι πράγματι ο βέλτιστος. Κατέληξε στο συμπέρασμα ότι «δεν μπορεί να υπάρξει καναπές μεγαλύτερος από τον καναπέ του Gerver». Σε αντίθεση με πολλές προηγούμενες προσπάθειες, η δουλειά του βασίστηκε αποκλειστικά στη λογική μαθηματική συλλογιστική και όχι σε εκτεταμένες υπολογιστικές προσομοιώσεις.

 

Η έρευνα συμπεριλήφθηκε από το περιοδικό Scientific American στις «10 κορυφαίες μαθηματικές ανακαλύψεις του 2025».

Το περιοδικό σημείωσε ότι «ενώ πολλοί ερευνητές είχαν στηριχθεί σε μεγάλης κλίμακας προσομοιώσεις υπολογιστών για να προσεγγίσουν το μέγιστο μέγεθος του καναπέ, προκαλεί έκπληξη το γεγονός ότι η τελική λύση του Baek Jin Eon δεν εξαρτάται καθόλου από υπολογιστές».


Ο μαθηματικός δρ. Baek Jin Eon
Ο Κορεάτης μαθηματικός δρ. Baek Jineon
(Photo Courtesy of KIAS)


Ο δρ. Baek ξεκίνησε να ασχολείται με το "πρόβλημα μετακίνησης του καναπέ" κατά τη διάρκεια της στρατιωτικής του θητείας και συνέχισε τόσο στις διδακτορικές του σπουδές στις Ηνωμένες Πολιτείες Αμερικής, όσο και αργότερα ως μεταδιδακτορικός ερευνητής στη Νότια Κορέα. Σήμερα συνεχίζει να εργάζεται πάνω σε προβλήματα βελτιστοποίησης και προκλήσεις της συνδυαστικής γεωμετρίας. Παρόλο που ακόμη δεν έχει ολοκληρωθεί η διαδικασία peer review και δεν έχει γίνει επίσημη δημοσίευση σε επιστημονικό περιοδικό, πολλοί μαθηματικοί εκφράζουν ήδη υψηλή εμπιστοσύνη στην ορθότητα του αποτελέσματος…


Τρίτη 29 Ιουλίου 2025

Μαθηματικά στην τηλεόραση: "The Big Bang Theory"


📺Στην προσπάθεια να συγκεντρώσουμε τις καλύτερες τηλεοπτικές σειρές με μαθηματικό περιεχόμενο, η σειρά που έχει σήμερα την τιμητική της είναι η πολυαγαπημένη The Big Bang Theory”…

 


The Big Bang Theory


🎞️Πρώτη κυκλοφορία: 2007

🎥Σεζόν: 12

📜Υπόθεση:

Ο Leonard και ο Sheldon, δύο λαμπροί, εκκεντρικοί φυσικοί που εργάζονται στο Cal Τech της Καλιφόρνια, είναι, εκτός από συνάδελφοι, συγκάτοικοι και κολλητοί φίλοι. Οι δύο άλλοι φίλοι τους και συνάδελφοι από το Cal Τech, Howard και Raj, συμπληρώνουν την εκκεντρική, nerdy τετράδα. Καθώς όλοι τους είναι «βυθισμένοι» στην επιστημονική τους έρευνα, αλλά και σε βιντεοπαιχνίδια, κόμικς και ταινίες επιστημονικής φαντασίας, δεν φαίνεται να έχουν μεγάλη τύχη όσον αφορά το αντίθετο φύλο. Όλα αλλάζουν όταν απέναντι από το διαμέρισμα των Leonard και Sheldon μετακομίζει η πανέμορφη σερβιτόρα και επίδοξη ηθοποιός Penny

Σε μια σειρά με πρωταγωνιστές τέσσερις φυσικούς, τα μαθηματικά αναπόφευκτα κάνουν την εμφάνισή τους. Η σειρά έχει εμπνεύσει ακόμη και μια μαθηματική απόδειξη! Σε ένα επεισόδιο, ο Sheldon είπε ότι ο αγαπημένος του αριθμός ήταν το 73. Γιατί; Το 73 είναι ο 21ος πρώτος αριθμός. Τώρα, αναστρέφοντας το 21 παίρνουμε τον αριθμό 12. Ποιος είναι ο 12ος πρώτος αριθμός; Το 37, που είναι, φυσικά, το 73 ανεστραμμένο. Ενώ το 21 από την άλλη ισούται με 3 επί 7. Ανάλογες ιδιότητες έχει και στο δυαδικό σύστημα! 

 





Ο καθηγητής του Κολλεγίου Dartmouth και φαν της εκπομπής, Carl Pomerance, ήταν περίεργος για το αν αυτή ήταν η μόνη περίπτωση στην οποία αυτό ήταν δυνατό ή όχι και έγραψε μια απόδειξη για το θέμα, που έχει ονομαστεί ανεπίσημα «Η εικασία του Sheldon». Ένα τμήμα της απόδειξης εμφανίστηκε ακόμη και στο παρασκήνιο του επεισοδίου με τίτλο “The Inspiration Deprivation”. Την απόδειξη μπορείτε να διαβάσετε εδώ. 


O Sheldon Cooper στο τηλεοπτικό σίριαλ Big Bang Theory χρησιμοποιεί το θεώρημα του Bayes
Ο Sheldon χρησιμοποιεί το Θεώρημα του Bayes


💡Ιδέα που πρεσβεύει: “Smart is the new sexy”.





💬Γράψτε στα σχόλια, όσοι έχετε δει τη σειρά, τη γνώμη σας. Ποιες άλλες σειρές με μαθηματικό περιεχόμενο έχετε να προτείνετε;

🎬Τσεκάρετε εδώ τη λίστα με τις μαθηματικές ταινίες που έχουμε συγκεντρώσει.


Σάββατο 22 Φεβρουαρίου 2025

Μαθηματικά στην τηλεόραση: "NUMB3RS"


📺Κι όμως! Τα μαθηματικά έχουν... τηλεθέαση.

🎬Μετά τη μεγάλη απήχηση που είχε η λίστα με τις καλύτερες ταινίες μαθηματικού περιεχομένου (η οποία συνεχίζει να εμπλουτίζεται), σκέφτηκα να κάνω κάτι αντίστοιχο και για τις τηλεοπτικές σειρές που περιέχουν μαθηματικά στην πλοκή τους. Για όσους, λοιπόν, αγαπούν τις τηλεοπτικές σειρές και δεν θα έλεγαν "όχι" σε λίγα ψυχαγωγικά μαθηματικά, σε αυτήν τη στήλη θα παρουσιάζουμε τις προτάσεις μας και θα ανταλλάζουμε απόψεις. 

🎥Τα "εγκαίνια" της λίστας θα γίνουν με τη σειρά "Numb3rs"...


Numb3rs


🎞️Πρώτη κυκλοφορία: 2005

📽️Σεζόν: 6

📜Υπόθεση:

Σε κάθε επεισόδιο, η σειρά παρουσιάζει δραματοποιημένες, πραγματικές υποθέσεις, στις οποίες αληθινές μαθηματικές ιδέες παίζουν κρίσιμο ρόλο. Ένας από τους δύο ήρωες, ο καθηγητής Τσάρλι Επς, είναι μαθηματικός. Μεγάλο μέρος της δράσης κινείται γύρω από τα μαθηματικά, καθώς ο Τσάρλι χρησιμοποιεί την επιστήμη και την τετράγωνη λογική του για να βοηθήσει τον μεγαλύτερο αδελφό του, Ντον, πράκτορα του FBI, στην ταυτοποίηση και στον εντοπισμό εγκληματιών.

Οι σεναριογράφοι της σειράς -καθηγητές μαθηματικών και επιστημονικοί σύμβουλοι της σειράς NUMB3RS- αναλύουν τις μαθηματικές ιδέες που χρησιμοποιούνται. Από την ιατροδικαστική μέχρι την αντιτρομοκρατία, από την Υπόθεση Ρίμαν μέχρι την ανασύνθεση εικόνας και την εξόρυξη δεδομένων, από τους κωδικούς στις πιστωτικές κάρτες μέχρι τη θεωρία παιγνίων και τις απάτες στο καζίνο, οι αριθμοί κυριαρχούν.

Τα μαθηματικά είναι κάτι παραπάνω από εξισώσεις και τύπους. Είναι η λογική, είναι η ικανότητα να σκεφτόμαστε, είναι η αξιοποίηση του μυαλού μας. Τα χρησιμοποιούμε για να αποκαλύψουμε μοτίβα, για να προβλέψουμε τη συμπεριφορά, για να αναλύσουμε το έγκλημα. Χρησιμοποιώντας τους αριθμούς, μπορούμε να λύσουμε τα μεγαλύτερα μυστήρια του κόσμου μας.

Κι αν εξακολουθείτε να αναρωτιέστε σε τι χρησιμεύουν τα μαθηματικά στη ζωή μας, η απάντηση είναι ότι... «Everything is NUMB3RS».



💬Γράψτε στα σχόλια, όσοι την έχετε δει, την κριτική σας. Ποιες άλλες σειρές έχετε να προτείνετε;


Σάββατο 28 Ιανουαρίου 2023

Abbott and Costello: Πόσο κάνει 7 επί 13??


Στην τηλεοπτική σειρά της δεκαετίας του 1950 "The Abbott and Costello Show" (1η σεζόν - επεισόδιο 8: The army story), ο Lou Costello μας αφήνει άφωνους με τις... αριθμητικές του δεξιότητες! Ενώ πρέπει να πληρώσει το ενοικιαζόμενο δωμάτιο που κοστίζει $7 την εβδομάδα και χρωστάει το ενοίκιο 13 εβδομάδων, "αποδεικνύει" ξεκάθαρα και με τρεις διαφορετικούς τρόπους ότι 7*13=28. Πώς να του φέρει κανείς αντίρρηση;;;




Παρασκευή 1 Απριλίου 2022

Το παράδοξο του ψεύτη... Από τον Επιμενίδη στο Star Trek και ο γρίφος του γελωτοποιού



O Επιμενίδης από την Κρήτη (6ος αιώνας π.Χ.) ήταν θρησκευτικός διδάσκαλος, προφήτης και μάντης και είναι περισσότερο γνωστός για ένα λογικό παράδοξο που έχει συνδεθεί με το όνομά του. Η λέξη "παράδοξο" (παρά την δόξα) σημαίνει ό,τι είναι αντίθετο με την κοινή λογική, την καθιερωμένη άποψη και τη λογική συνέπεια. Ο Επιμενίδης, λοιπόν, έγραψε κάποτε:

"Οι Κρητικοί λένε πάντα ψέματα".

Αν σκεφτείτε καλά την παραπάνω πρόταση, θα δείτε ότι οδηγεί σε φαύλο κύκλο. Αν οι Κρητικοί λένε πάντα ψέματα, τότε και ο Επιμενίδης, ως Κρητικός λέει ψέματα. Άρα δεν αληθεύει η παραπάνω πρόταση, δηλαδή οι Κρητικοί δεν λένε πάντα ψέματα. Τότε όμως και ο Επιμενίδης δεν ψεύδεται κ.ο.κ. 


Κάποιοι βέβαια θα σκεφτούν ότι το παράδοξο αυτό επιλύεται πολύ εύκολα, αφού στην προηγούμενη πρόταση κάνουμε μια εσφαλμένη γενίκευση. Στη ζωή του ένας άνθρωπος λέει και ψέματα και αλήθειες. Ποτέ όμως ταυτόχρονα. Δεν είναι δυνατόν όλοι οι Κρητικοί να λένε ψέματα και μάλιστα ταυτόχρονα... 


Τα πράγματα, όμως, δεν είναι τόσο απλά, αφού δεν είναι αυτή η ουσία του παραδόξου. Ας ξεχάσουμε τους Κρητικούς και ας δούμε μια πρόταση, όπως οι κλασικές προτάσεις στα Μαθηματικά, που τις χειριζόμαστε με τη δίτιμη λογική των Μαθηματικών (και της Πληροφορικής), αληθής ή ψευδής:

"Αυτή η πρόταση είναι ψευδής".

Έστω ότι η παραπάνω πρόταση είναι αληθής. Τότε, σύμφωνα με αυτήν, είναι ψευδής. 

Έστω ότι η παραπάνω πρόταση είναι ψευδής. Τότε, αφού δεν ισχύει αυτό που λέει, δηλαδή δεν είναι ψευδής, η πρόταση αυτή είναι αληθής. Τελικά τι είναι;


Η πρόταση αυτή είναι ταυτόχρονα αληθής και ψευδής. Το παράδοξο του Επιμενίδη ανήκει σε μια γενικότερη κατηγορία παραδόξων, τα λεγόμενα "παράδοξα του ψεύτη". Οι φιλόσοφοι χρησιμοποίησαν κατά καιρούς τα παράδοξα για να αντικρούσουν την πλάνη των αισθήσεων. Αντιθέτως, οι μαθηματικοί μάλλον τα αντιμετώπιζαν με τρόμο. Ήταν κάτι σαν το κουτί της Πανδώρας, που αν το ανοίξεις μπορεί να καταστραφεί όλο το μαθηματικό οικοδόμημα σε μια στιγμή! Τουλάχιστον αυτό ίσχυε μέχρι τα μέσα του 19ου αιώνα, οπότε και τα παράδοξα άρχισαν να αντιμετωπίζονται με τρόπο περισσότερο εποικοδομητικό. 



Στο επεισόδιο "I, Mudd" του Star Trek - The Original Series (Season 2) γίνεται μια πετυχημένη αναφορά στο παράδοξο του ψεύτη. To πλήρωμα του Εντερπράιζ απάγεται και κρατείται σε έναν πλανήτη έξυπνων ανδροειδών. Με το τέχνασμα μιας έκρηξης, ο Κερκ και ο απατεώνας Χάρι Μαντ μπερδεύουν τον Νόρμαν, τον ηγέτη των ανδροειδών, χρησιμοποιώντας το παράδοξο του ψεύτη:

ΝΟΡΜΑΝ: Μα δεν υπήρξε έκρηξη...

ΜΑΝΤ: Είπα ψέματα.

ΝΟΡΜΑΝ: Τι;

ΚΕΡΚ: Είπε ψέματα. Όλα όσα σου λέει ο Χάρι είναι ψέματα. Να ξέρεις ότι όλα όσα σου λέει ο Χάρι είναι ένα ψέμα.

ΜΑΝΤ: Άκου με προσεκτικά, Νόρμαν. Σου λέω ψέματα.

ΝΟΡΜΑΝ: Λες ότι είσαι ψεύτης, αλλά αν ό,τι λες είναι ψέμα, τότε λες την αλήθεια, αλλά δεν μπορείς να πεις την αλήθεια, επειδή ό,τι λες είναι ψέματα. Λες ψέματα... Λες την αλήθεια... Αλλά δεν μπορείς να... Παράλογο! Παράλογο! Παρακαλώ εξηγήστε... Μόνο οι άνθρωποι μπορούν να το εξηγήσουν...

Επειδή ο Νόρμαν δεν μπορεί να επιλύσει το παράδοξο, το κεφάλι του αρχίζει να βγάζει καπνούς, ώσπου "μένει στον τόπο", αφήνοντας το πλήρωμα του Εντερπράιζ να δραπετεύσει.




Τέλος, ένας γρίφος λογικής που σχετίζεται με το σημερινό θέμα: 

Ένας βασιλιάς, που είχε βαρεθεί το γελωτοποιό του και έψαχνε αφορμή να τον ξεφορτωθεί, τον κάλεσε και του είπε: "Πες κάτι, ό,τι θέλεις. Αν αυτό που θα πεις είναι ψέμα, θα σε κρεμάσω. Αν αυτό που θα πεις είναι αλήθεια, θα σε σφάξω". Ο γελωτοποιός στάθηκε για λίγο σκεπτικός και έπειτα είπε κάτι στον βασιλιά. Και έζησε!

Τι του είπε;;; 


*~*-.-*~*-.-*~*


Πηγές και αναφορές:
Αναπολιτάνος Διονύσιος, Εισαγωγή στη Φιλοσοφία των Μαθηματικών, Εκδόσεις Νεφέλη, 1961
Επιμενίδης - Βικιπαίδεια
Θαλής + φίλοι