File failed to load: https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/latest/jax/input/TeX/config.js
Εμφάνιση αναρτήσεων με ετικέτα ιστορία των μαθηματικών. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα ιστορία των μαθηματικών. Εμφάνιση όλων των αναρτήσεων

Παρασκευή 14 Μαρτίου 2025

14/3...Ημέρα του π: Λίγη τέχνη, λίγη ιστορία και λίγα μαθηματικά!

 

Η Ημέρα του «π», που γιορτάζεται στις 14/3, είναι ένας ετήσιος εορτασμός της μαθηματικής σταθεράς π. Καθιερώθηκε το 1988 από τον Larry Shaw, υπάλληλο του επιστημονικού μουσείου του Σαν Φρανσίσκο της Καλιφόρνια, του Exploratorium.

 

Ο Jonathan J Fuller δημιουργεί έργα μαθηματικής τέχνης βασιζόμενος στα ψηφία του π. Δείτε εδώ πώς…


π και συμμετρία


Το σύμβολο για τον αριθμό «π» χρησιμοποιείται εδώ και πάνω από 250 χρόνια. Εισήχθη το 1706 από τον Ουαλό μαθηματικό William Jones, φίλο του Sir Isaac Newton, ενώ έγινε δημοφιλές από τον Ελβετό μαθηματικό Leonhard Euler. Επιλέχθηκε το ελληνικό γράμμα «π», που είναι το πρώτο γράμμα της λέξης «περιφέρεια» και «περίμετρος». (Θυμηθείτε ότι το π είναι ο λόγος της περιφέρειας ενός κύκλου προς τη διάμετρό του! Ο λόγος αυτός είναι σταθερός και ανεξάρτητος από το μέγεθος του κύκλου). Πριν από το 1700, οι μαθηματικοί αναφέρονταν στον αριθμό που γνωρίζουμε ως «π» ως «το μέγεθος που όταν η διάμετρος ενός κύκλου πολλαπλασιάζεται με αυτό, δίνει την περιφέρειά του». Δεν αποτελεί έκπληξη το γεγονός ότι οι άνθρωποι κουράστηκαν να λένε τόσο πολλά κάθε φορά που ήθελαν να αναφερθούν στο π…


Προσπαθώντας να προσεγγίσουμε το άπειρο…

Ποτέ δεν θα μπορέσουμε να βρούμε όλα τα ψηφία του π, επειδή είναι άρρητος αριθμός, δηλαδή έχει άπειρα δεκαδικά ψηφία τα οποία δεν επαναλαμβάνονται περιοδικά. Ο βαβυλωνιακός πολιτισμός χρησιμοποιούσε το κλάσμα 3⅛, ενώ οι αρχαίοι Κινέζοι χρησιμοποιούσαν τον ακέραιο αριθμό 3. Οι Αρχαίοι Αιγύπτιοι, όπως γνωρίζουμε από τον Πάπυρο του Ριντ (περίπου 1650 π.Χ.), προσέγγιζαν το π ως 3,1605 μέσω του τύπου για το εμβαδόν του κύκλου. Ο Αρχιμήδης (3ος αιώνας π.Χ.), στο έργο του «Κύκλου Μέτρησις», χρησιμοποιεί την αρκετά καλή προσέγγιση \( \frac{223}{71} < \pi <  \frac{22}{7} \). Ο Πτολεμαίος (2ος αιώνας μ.Χ.), στο έργο του «Αλμαγέστη», χρησιμοποίησε την προσέγγιση 3,1416.

 

Μέχρι το 1665, ο Ισαάκ Νεύτων υπολόγισε μια ρητή προσέγγιση του π με 16 δεκαδικά ψηφία. Οι υπολογιστές δεν είχαν εφευρεθεί ακόμα, οπότε αυτό ήταν μια πολύ μεγάλη υπόθεση. Στις αρχές της δεκαετίας του 1700 ο Τόμας Λάγκνεϊ υπολόγισε τα πρώτα 127 δεκαδικά ψηφία του π. Το 1767 ο Γιόχαν Χάινριχ Λάμπερτ απέδειξε ότι ο π είναι άρρητος αριθμός. Στο δεύτερο μισό του εικοστού αιώνα, ο αριθμός των γνωστών ψηφίων του π αυξήθηκε από περίπου 2000 σε 500.000 χάρη στον CDC 6600, έναν από τους πρώτους υπολογιστές που κατασκευάστηκαν ποτέ. Το ρεκόρ αυτό καταρρίφθηκε το 2017, όταν ένας Ελβετός επιστήμονας υπολόγισε περισσότερα από 22 τρισεκατομμύρια ψηφία του π. Στη «μάχη» της ακριβέστερης προσέγγισης του π, κατέρριψε το 2019 το ρεκόρ η Emma Haruka Iwao της Google. Χρησιμοποιώντας το Google Cloud, υπολόγισε 31,4 τρισεκατομμύρια ψηφία του π. Το 2021, μια ομάδα μαθηματικών από το Πανεπιστήμιο Εφαρμοσμένης Επιστήμης του Grisnos στην Ελβετία, υπολόγισε περισσότερα από 62 τρισεκατομμύρια ψηφία του π. Σήμερα είναι γνωστά 105 τρισεκατομμύρια ψηφία του π, καθώς το 2024 μια αμερικάνικη εταιρεία υπολογιστών κατέχει το νέο ρεκόρ!

 


Πηγές και παραπομπές:

Imaginary.org|Pi Sacred Geometry

LiveScience|Pi Calculated to 105 Trillion Digits,smashing world record

Piday.org 

Wikipedia|π (μαθηματική σταθερά)


Τρίτη 25 Φεβρουαρίου 2025

Τριγωνικοί, τετραγωνικοί και εξαγωνικοί αριθμοί!

 

Στην αρχαιότητα, οι Πυθαγόρειοι θεωρούσαν πως τα πάντα στο σύμπαν μπορούσαν να εξηγηθούν με τη βοήθεια των αριθμών. Γι’ αυτό έφτιαχναν διάφορες ακολουθίες αριθμών με βάση γεωμετρικά σχήματα. Οι βασικότεροι είναι οι τριγωνικοί, οι τετραγωνικοί και οι εξαγωνικοί αριθμοί.

  

Τριγωνικός λέγεται κάθε αριθμός, ο οποίος, αν συμβολιστεί με σημεία –τόσα σημεία όσα υποδηλώνει ο αριθμός– σχηματίζεται τρίγωνο. Για να βρούμε τους τριγωνικούς αριθμούς, αρχίζουμε από το 1. Κάθε φορά προσθέτουμε και τον επόμενο φυσικό αριθμό. Δηλαδή:

1

1+2=3

1+2+3=6

1+2+3+4=10

1+2+3+4+5=15

1+2+3+4+5+6=21


Το άθροισμα που προκύπτει κάθε φορά (σημειωμένο με έντονο) είναι και ένας τριγωνικός αριθμός.

 

Μπορούμε να αναπαραστήσουμε τους τριγωνικούς αριθμούς με ισόπλευρα τρίγωνα, όπως φαίνεται στο παρακάτω σχήμα:

 

τριγωνικοί αριθμοί


Ο n-οστός τριγωνικός αριθμός είναι το άθροισμα των n πρώτων θετικών ακεραίων. Συμβολίζεται με \(T_n\) και ισούται με

\(T_n=1+2+…+n=\frac{n(n+1)}{2}\)

π.χ. \(T_4=\frac{4 \cdot 5)}{2}=10\)

 

Για την ακολουθία των τριγωνικών αριθμών ισχύει και ο αναδρομικός τύπος:

\(T_1=1\)

\(T_n=T_{n-1}+n, n>1\)



Τετραγωνικός αριθμός, ή αλλιώς τέλειο τετράγωνο, λέγεται ένας θετικός ακέραιος αριθμός που είναι το τετράγωνο ενός άλλου ακέραιου αριθμού, δηλαδή ισούται με το γινόμενο του αριθμού εκείνου με τον εαυτό του.

Ένας τετραγωνικός αριθμός n αντιπροσωπεύεται από n σημεία (κουκκίδες), τα οποία σχηματίζουν τετράγωνο, με την κάθε πλευρά του να έχει n σημεία.


τετραγωνικοί αριθμοί


Ο αριθμός n είναι τετραγωνικός, αν και μόνο αν μπορούμε να συνθέσουμε ένα τετράγωνο από n ίσα μεταξύ τους τετράγωνα.

π.χ. 

n=1=12


n=4=22


n=9=32


n=16=42


n=25=52



Οι πρώτοι τετραγωνικοί αριθμοί (τέλεια τετράγωνα) είναι:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...

 

Για έναν θετικό ακέραιο n, ο n-οστός τετραγωνικός αριθμός είναι ο n2.


Κάποιοι τύποι που χρησιμεύουν για τον υπολογισμό ενός τετραγωνικού αριθμού όταν είναι γνωστός ο προηγούμενός του (αναδρομικοί τύποι), είναι:

n2=(n1)2+(n1)+n=(n1)2+(2n1)


Το άθροισμα δύο διαδοχικών τριγωνικών αριθμών είναι τετραγωνικός αριθμός.

π.χ. T3+T4=6+10=16, που είναι τετραγωνικός αριθμός.



Εξαγωνικός αριθμός λέγεται ένας πολυγωνικός αριθμός που παριστάνεται με ένα εξάγωνο.


εξαγωνικοί αριθμοί

 

Ο n-οστός εξαγωνικός αριθμός \(h_n\) είναι το πλήθος των κουκκίδων που «δημιουργούν» το εξαγωνικό σχήμα του. Στο μοτίβο αυτό, τα εξάγωνα δεν περιέχονται το ένα στο εσωτερικό του άλλου, αλλά έχουν όλα μία κοινή «κορυφή».

 

Οι πρώτοι εξαγωνικοί αριθμοί είναι:

1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, …


Ο τύπος που δίνει τον n-οστό εξαγωνικό αριθμό είναι:

\(h_n=2n^2-n=n(2n-1)=\frac{2n(2n-1)}{2} \)

 

Κάθε εξαγωνικός αριθμός είναι και τριγωνικός αριθμός.

Κάθε τριγωνικός αριθμός με περιττό πλήθος «πλευρών» (δηλαδή ο \(T_n\) με n περιττό) είναι εξαγωνικός αριθμός.

Κάθε άρτιος τέλειος αριθμός είναι εξαγωνικός. Καθώς δεν είναι γνωστός κανένας τέλειος αριθμός που να είναι περιττός, όλοι οι γνωστοί τέλειοι αριθμοί είναι εξαγωνικοί.


Για να ελέγξουμε αν ένας θετικός ακέραιος \(x\) είναι εξαγωνικός, μπορούμε να υπολογίσουμε τον αριθμό

\(n=\frac{\sqrt{8x+1}+1}{4}\).

Αν ο \(n\) είναι ακέραιος, τότε ο \(x\) είναι ο n-οστός εξαγωνικός αριθμός. Αλλιώς ο \(x\) δεν είναι εξαγωνικός.



👉Ανακαλύψτε περισσότερα στην "Online Εγκυκλοπαίδεια Ακολουθιών Ακέραιων Αριθμών" (OEIS).


Τρίτη 12 Νοεμβρίου 2024

Υπάρχει σε όλα λύση; Ταξίδι στον Κόσμο των Αρχαίων Ελληνικών Μαθηματικών...Ξανά και το 2024...

 

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος»!

 

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».

Διαδραστικές και ψηφιακές εφαρμογές, εκθέματα Εικονικής Πραγματικότητας, κείμενα, εντυπωσιακές προβολές και κατασκευές συνθέτουν μία μοναδική έκθεση, με την αξιοποίηση της σύγχρονης τεχνολογίας.

 

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».
Τα πλατωνικά στερεά

Πρόκειται για μια εντυπωσιακή έκθεση στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος» που αφορά την ιστορία των μαθηματικών και την ανάπτυξη της μαθηματικής σκέψης στον αρχαίο ελληνικό κόσμο, την επιρροή τους σε άλλες επιστήμες και τέχνες, όπως την αστρονομία, τη μαθηματική γεωγραφία και τη μουσική. Αναφέρεται στα πιο σημαντικά «επεισόδια» και πρόσωπα της ιστορίας των ελληνικών μαθηματικών, όπως ο Θαλής, ο Ευκλείδης και ο Πυθαγόρας.

  

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».
Ο διπλασιασμός του τετραγώνου



Μέσα από μια σειρά διαδραστικών δραστηριοτήτων, οι επισκέπτες έρχονται σε επαφή με τα αριθμητικά συστήματα των Αιγυπτίων και των Βαβυλωνίων. Εξοικειώνονται με το θεώρημα του Θαλή, τους τρίγωνους και τετράγωνους αριθμούς των Πυθαγορείων, το Πυθαγόρειο θεώρημα και την έννοια της μαθηματικής απόδειξης. Χάρη στον εκπαιδευτικό και ψυχαγωγικό χαρακτήρα της έκθεσης, οι επισκέπτες ανακαλύπτουν πώς τα μαθηματικά μπορούν να γίνουν ενδιαφέροντα, ευχάριστα και κατανοητά.

 

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».
Οι κωνικές τομές

Στην έκθεση θα…

…γράψουμε αριθμούς με βάση τα ιερογλυφικά σύμβολα των αρχαίων Αιγυπτίων και τη σφηνοειδή γραφή των Βαβυλώνιων.

…προσπαθήσουμε να μοιράσουμε ακριβώς 6 καρβέλια ψωμί σε 10 άνδρες και θα γνωρίσουμε τον τρόπο με τον οποίο οι αρχαίοι Αιγύπτιοι το κατάφεραν, όπως παρουσιάζεται στον πάπυρο Rhind, το εκτενέστερο και ένα από τα πιο γνωστά κείμενα των αιγυπτιακών μαθηματικών.

…αναζητήσουμε γύρω μας σχήματα, όπως έκανε ο Θαλής και οι Ίωνες φιλόσοφοι και θα τα σχηματίσουμε στην άμμο με ραβδί.

…μάθουμε πώς υπολόγισε ο Θαλής το ύψος της πυραμίδας του Χέοπα, μόνο με ένα σχοινί και με την παρατηρητικότητά του...

…γνωρίσουμε τον Πυθαγόρα, τον άνθρωπο που έβλεπε παντού αριθμούς και θα πειραματιστούμε με τη μουσική κλίμακα στο μονόχορδό του.

…αναρωτηθούμε για το εάν υπάρχει τελικά σε όλα λύση, με κανόνα και διαβήτη και θα γνωρίσουμε τα τρία άλυτα προβλήματα της αρχαιότητας.

…μάθουμε πώς το λουτρό ενός πανεπιστήμονα μαθηματικού της αρχαιότητας έγινε αφορμή για έναν θεμελιώδη νόμο της υδροστατικής και πώς έγινε διάσημη η λέξη «Εύρηκα».

…δούμε πώς ο Ερατοσθένης κατάφερε με ελάχιστα μέσα να υπολογίσει με μεγάλη ακρίβεια την περιφέρεια της Γης.

…πειραματιστούμε με τον άβακα, το εργαλείο με το οποίο έκαναν υπολογισμούς και πράξεις οι αρχαίοι.

…αναρωτηθούμε από πού αντλούμε τις γνώσεις μας για τα αρχαία ελληνικά μαθηματικά.

…λύσουμε ένα πρόβλημα πρακτικής αριθμητικής του 15ου αιώνα, στο οποίο θα βοηθήσουμε μια κυρία να βρει πόσα ήταν τα αυγά που κρατούσε πριν σπάσουν.


Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».
Επιλύοντας ένα πρόβλημα πρακτικής αριθμητικής του 15ου αιώνα

  

Ψηφιακές εφαρμογές συνυπάρχουν με φυσικά διαδραστικά εκθέματα, όπως κατασκευές και προσφέρουν στον επισκέπτη μια μοναδική «ζωντανή» περιήγηση στον κόσμο των αρχαίων ελληνικών μαθηματικών. Τα παιδιά μαθαίνουν παίζοντας και οι ενήλικοι μαγεύονται από τη γοητεία της μαθηματικής επιστήμης.

 

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».

Για πρώτη φορά, στην έκθεση θα βιώσετε μοναδικές εμπειρίες Εικονικής Πραγματικότητας χάρη στα προηγμένα προγράμματα του «Ελληνικού Κόσμου», της «Κιβωτού», το πρώτο σύστημα εικονικής πραγματικότητας στην Ελλάδα ή του «Εικονικού Κινηματογράφου».


Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».

Η έκθεση αρχικά είχε παρουσιαστεί στο Κέντρο Πολιτισμού "Ελληνικός Κόσμος" από το 2003 μέχρι το 2013. Έπειτα φιλοξενήθηκε στο χώρο της Δ.Ε.Θ. από το Σεπτέμβριο του 2022 μέχρι τον Μάρτιο του 2023 (την είχαμε παρουσιάσει τότε στο "εις το άπειρον" εδώ). Η νέα εμπλουτισμένη έκθεση, την οποία έχει επιμεληθεί η ομάδα του Ιδρύματος Μείζονος Ελληνισμού, αποτελεί συνέχεια της έκθεσης που είχε πραγματοποιηθεί με μεγάλη επιτυχία στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος» και είχε συγκροτηθεί με τη φροντίδα των επιστημόνων του ΙΜΕ, καθώς και με την ευγενική συμβολή της Ελληνικής Μαθηματικής Εταιρείας, ενώ η επιστημονική επιμέλεια της έκθεσης έφερε την υπογραφή του ειδικού της Ιστορίας των Μαθηματικών, καθηγητή Γιάννη Χριστιανίδη. Τη μουσειολογική μελέτη είχαν εκπονήσει η Αλεξάνδρα Νικηφορίδου, η Ανδρομάχη Γκαζή και η Θεανώ Μουσούρη, ενώ τη μουσειογραφική μελέτη είχε επιμεληθεί ο Σταμάτης Ζάννος.

 

🗓Έναρξη έκθεσης: 16 Νοεμβρίου 2024

📍Τοποθεσία: Κέντρο Πολιτισμού "Ελληνικός Κόσμος", Πειραιώς 254, Ταύρος

💻Περισσότερες πληροφορίες και εισιτήρια: Ελληνικός Κόσμος




Δευτέρα 14 Οκτωβρίου 2024

"Γυναίκες μαθηματικοί στο περιθώριο της ιστορίας"


Δημήτρης Χασάπης Γυναίκες μαθηματικοί στο περιθώριο της ιστορίας

Πορτρέτα τριάντα πέντε πρωτοπόρων γυναικών μαθηματικών, οι οποίες σε διάφορες ιστορικές περιόδους, χώρες και πολιτισμούς, υπερβαίνοντας εμπόδια και προκαταλήψεις, συνέβαλαν καθοριστικά στην εξέλιξη της επιστήμης. Για τις γυναίκες αυτές, όμως, η Ιστορία και οι ιστορίες των μαθηματικών δεν έχουν αφιερώσει παρά μόνο σύντομα σχόλια ή ελάχιστες αναφορές στο περιθώριό τους ή τις έχουν εντελώς αγνοήσει.

Λέγεται συχνά ότι η Ιστορία γράφεται από τους νικητές, αλλά η ιστορία των μαθηματικών γράφτηκε από τους άνδρες, τους νικητές στον άδικο πόλεμο των μύθων και των προκαταλήψεων σε βάρος διαπρεπών γυναικών μαθηματικών. Μια αδικία που το βιβλίο αυτό επιδιώκει να αποκαταστήσει.


Γυναίκες μαθηματικοί στο περιθώριο της ιστορίας
Η παρουσίαση του βιβλίου του Δημήτρη Χασάπη, "Γυναίκες μαθηματικοί στο περιθώριο της ιστορίας" θα γίνει την Πέμπτη 17 Οκτωβρίου 2024 και ώρα 7.30μμ στο IANOS café, Σταδίου 24, Αθήνα. 


Δημήτρης Χασάπης Γυναίκες μαθηματικοί στο περιθώριο της ιστορίας


Κυριακή 6 Οκτωβρίου 2024

Πρώτοι και σύνθετοι αριθμοί: Το κόσκινο του Ερατοσθένη και μια απόδειξη του Ευκλείδη

 

πρώτοι αριθμοί


Πρώτος καλείται ένας φυσικός αριθμός που διαιρείται μόνο με το 1 και τον εαυτό του. Για παράδειγμα οι αριθμοί 2, 3, 11, 17 είναι πρώτοι. Ένας αριθμός που δεν είναι πρώτος καλείται σύνθετος. Για παράδειγμα, ο αριθμός 9 είναι σύνθετος, αφού εκτός της μονάδας και του εαυτού του έχει διαιρέτη και το 3.

Επειδή το 1 έχει μόνο έναν διαιρέτη (το 1, που είναι και ο εαυτός του), δεν είναι ούτε πρώτος ούτε σύνθετος αριθμός. Το 2 είναι ο μοναδικός άρτιος πρώτος, ενώ όλοι οι υπόλοιποι πρώτοι αριθμοί είναι περιττοί.

Μπορούμε να βρούμε όλους τους πρώτους αριθμούς με ένα «κόσκινο»: Το κόσκινο του Ερατοσθένη κρατάει όλους τους σύνθετους αριθμούς και αφήνει να περάσουν όλοι οι πρώτοι.


Πρώτος καλείται ένας φυσικός αριθμός που διαιρείται μόνο με το 1 και τον εαυτό του. Για παράδειγμα οι αριθμοί 2, 3, 11, 17 είναι πρώτοι. Ένας αριθμός που δεν είναι πρώτος καλείται σύνθετος. Για παράδειγμα, ο αριθμός 9 είναι σύνθετος, αφού εκτός της μονάδας και του εαυτού του έχει διαιρέτη και το 3. Επειδή το 1 έχει μόνο έναν διαιρέτη (το 1, που είναι και ο εαυτός του), δεν είναι ούτε πρώτος ούτε σύνθετος αριθμός. Το 2 είναι ο μοναδικός άρτιος πρώτος, ενώ όλοι οι υπόλοιποι πρώτοι αριθμοί είναι περιττοί. Μπορούμε να βρούμε όλους τους πρώτους αριθμούς με ένα «κόσκινο»: Το κόσκινο του Ερατοσθένη κρατάει όλους τους σύνθετους αριθμούς και αφήνει να περάσουν όλοι οι πρώτοι. Για να βρούμε τους πρώτους αριθμούς, εργαζόμαστε ως εξής: 1. Αφήνουμε απέξω το 1 (είπαμε: δεν είναι ούτε πρώτος, ούτε σύνθετος).  2. Παίρνουμε τον επόμενο αριθμό (το 2). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του. 3. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 3). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν έχουν σβηστεί από πριν, ως πολλαπλάσια του 2). 4. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 5). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα έχουν σβηστεί από πριν). 5. Παίρνουμε τον επόμενο αριθμό που έμεινε (το 7). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν είναι σβησμένα από πριν). Με τον ίδιο τρόπο συνεχίζουμε για πάντα (αφού οι αριθμοί δεν τελειώνουν ποτέ)!    Αν όμως θέλουμε να βρούμε τους πρώτους αριθμούς μέχρι το 120 (όπως κάνουμε τώρα), δεν χρειάζεται να προχωρήσουμε παραπάνω από το 7, αφού...  ...οι αριθμοί που έχουν μείνει, (αυτοί που είναι μέσα στα κυκλάκια) είναι οι πρώτοι αριθμοί.  Οι πρώτοι αριθμοί μέχρι το 120 δίνονται παρακάτω: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113. Γεννάται λοιπόν το ερώτημα: Πόσοι είναι οι πρώτοι αριθμοί; Την απάντηση έδωσε ο Ευκλείδης στα Στοιχεία (πρόταση ΙΧ.20) που αποδεικνύει ότι το πλήθος τους είναι άπειρο. Η απόδειξη παραφράζεται εδώ και είναι η εξής: Εξετάστε οποιαδήποτε πεπερασμένη λίστα πρώτων αριθμών \(p_1, p_2 , ..., p_n\). Θα αποδειχθεί, ότι υπάρχει τουλάχιστον ένας πρόσθετος πρώτος αριθμός, που δεν υπάρχει στη λίστα. Έστω \(P\) το γινόμενο όλων των πρώτων αριθμών στη λίστα, δηλ.  \[P =p_1 \cdot p_2 \cdot  ... \cdot  p_n\].   Ας είναι \(q = P + 1\). Τότε ο \(q\) είναι είτε πρώτος ή όχι: •	Εάν ο \(q\) είναι πρώτος, τότε υπάρχει τουλάχιστον ένας ακόμη πρώτος, που δεν περιλαμβάνεται στη λίστα. •	Εάν ο \(q\) δεν είναι πρώτος, τότε κάποιος πρώτος παράγοντας \(p\) διαιρεί τον \(q\). Εάν αυτός ο παράγοντας \(p\) ήταν στη λίστα μας, τότε θα διαιρούσε το \(P\) (αφού το \(P\) είναι το γινόμενο κάθε αριθμού στη λίστα). Αλλά ο \(p\) διαιρεί επίσης το \(P + 1 = q\), όπως μόλις αναφέρθηκε. Εάν ο \(p\) διαιρεί το P και το q, τότε το p πρέπει επίσης να διαιρεί τη διαφορά των δύο αριθμών, που είναι \( (P + 1) - P = 1\). Δεδομένου ότι κανένας πρώτος αριθμός δεν διαιρεί το \(1\), ο \(p\) δεν μπορεί να είναι στη λίστα. Αυτό σημαίνει, ότι υπάρχει τουλάχιστον ένας ακόμη πρώτος αριθμός πέραν εκείνων της λίστας. Αυτό αποδεικνύει, ότι για κάθε πεπερασμένη λίστα πρώτων αριθμών, υπάρχει ένας πρώτος αριθμός, που δεν βρίσκεται στη λίστα. Άρα οι πρώτοι αριθμοί είναι άπειροι στο πλήθος. Η απόδειξη αυτή του Ευκλείδη θεωρείται από τις κομψότερες αποδείξεις στην ιστορία των μαθηματικών.
Το κόσκινο του Ερατοσθένη: Από το βιβλίο Μαθηματικών της Α΄ Γυμνασίου, εκδόσεις Διόφαντος, 2023

Για να βρούμε τους πρώτους αριθμούς, εργαζόμαστε ως εξής:

1. Αφήνουμε απέξω το 1 (είπαμε: δεν είναι ούτε πρώτος, ούτε σύνθετος).

2. Παίρνουμε τον επόμενο αριθμό (το 2). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του.

3. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 3).
Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν έχουν σβηστεί από πριν, ως πολλαπλάσια του 2).

4. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 5).
Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα έχουν σβηστεί από πριν).

5. Παίρνουμε τον επόμενο αριθμό που έμεινε (το 7).
Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν είναι σβησμένα από πριν).

Με τον ίδιο τρόπο συνεχίζουμε για πάντα (αφού οι αριθμοί δεν τελειώνουν ποτέ)!

 

Πρώτος καλείται ένας φυσικός αριθμός που διαιρείται μόνο με το 1 και τον εαυτό του. Για παράδειγμα οι αριθμοί 2, 3, 11, 17 είναι πρώτοι. Ένας αριθμός που δεν είναι πρώτος καλείται σύνθετος. Για παράδειγμα, ο αριθμός 9 είναι σύνθετος, αφού εκτός της μονάδας και του εαυτού του έχει διαιρέτη και το 3. Επειδή το 1 έχει μόνο έναν διαιρέτη (το 1, που είναι και ο εαυτός του), δεν είναι ούτε πρώτος ούτε σύνθετος αριθμός. Το 2 είναι ο μοναδικός άρτιος πρώτος, ενώ όλοι οι υπόλοιποι πρώτοι αριθμοί είναι περιττοί. Μπορούμε να βρούμε όλους τους πρώτους αριθμούς με ένα «κόσκινο»: Το κόσκινο του Ερατοσθένη κρατάει όλους τους σύνθετους αριθμούς και αφήνει να περάσουν όλοι οι πρώτοι. Για να βρούμε τους πρώτους αριθμούς, εργαζόμαστε ως εξής: 1. Αφήνουμε απέξω το 1 (είπαμε: δεν είναι ούτε πρώτος, ούτε σύνθετος).  2. Παίρνουμε τον επόμενο αριθμό (το 2). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του. 3. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 3). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν έχουν σβηστεί από πριν, ως πολλαπλάσια του 2). 4. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 5). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα έχουν σβηστεί από πριν). 5. Παίρνουμε τον επόμενο αριθμό που έμεινε (το 7). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν είναι σβησμένα από πριν). Με τον ίδιο τρόπο συνεχίζουμε για πάντα (αφού οι αριθμοί δεν τελειώνουν ποτέ)!    Αν όμως θέλουμε να βρούμε τους πρώτους αριθμούς μέχρι το 120 (όπως κάνουμε τώρα), δεν χρειάζεται να προχωρήσουμε παραπάνω από το 7, αφού...  ...οι αριθμοί που έχουν μείνει, (αυτοί που είναι μέσα στα κυκλάκια) είναι οι πρώτοι αριθμοί.  Οι πρώτοι αριθμοί μέχρι το 120 δίνονται παρακάτω: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113.



Αν όμως θέλουμε να βρούμε τους πρώτους αριθμούς μέχρι το 120 (όπως κάνουμε τώρα), δεν χρειάζεται να προχωρήσουμε παραπάνω από το 7, αφού...

...οι αριθμοί που έχουν μείνει, (αυτοί που είναι μέσα στα κυκλάκια) είναι οι πρώτοι αριθμοί.

 

Οι πρώτοι αριθμοί μέχρι το 120 δίνονται παρακάτω:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113.


Γεννάται λοιπόν το ερώτημα: Πόσοι είναι οι πρώτοι αριθμοί; Τελειώνουν κάπου; Την απάντηση έδωσε ο Ευκλείδης στα "Στοιχεία" του (Πρόταση ΙΧ.20) αποδεικνύοντας ότι το πλήθος τους είναι άπειρο. Η απόδειξη παραφράζεται εδώ και είναι η εξής:

Εξετάστε οποιαδήποτε πεπερασμένη λίστα πρώτων αριθμών p1, p2 , ... , pn. Θα αποδειχθεί, ότι υπάρχει τουλάχιστον ένας πρόσθετος πρώτος αριθμός, που δεν υπάρχει στη λίστα. Έστω P το γινόμενο όλων των πρώτων αριθμών στη λίστα, δηλ. 

P =p1 · p2 ·  ... ·  pn 

 Ας είναι q = P + 1. Τότε ο q είναι είτε πρώτος ή όχι:

  • Εάν ο q είναι πρώτος, τότε υπάρχει τουλάχιστον ένας ακόμη πρώτος, που δεν περιλαμβάνεται στη λίστα.
  • Εάν ο q δεν είναι πρώτος, τότε κάποιος πρώτος παράγοντας p διαιρεί τον q. Εάν αυτός ο παράγοντας p ήταν στη λίστα μας, τότε θα διαιρούσε το P (αφού το P είναι το γινόμενο κάθε αριθμού στη λίστα). Αλλά ο p διαιρεί επίσης το P + 1 = q, όπως μόλις αναφέρθηκε. Εάν ο p διαιρεί το P και το q, τότε το p πρέπει επίσης να διαιρεί τη διαφορά των δύο αριθμών, που είναι  (P + 1) - P = 1. Δεδομένου ότι κανένας πρώτος αριθμός δεν διαιρεί το 1, ο p δεν μπορεί να είναι στη λίστα. Αυτό σημαίνει, ότι υπάρχει τουλάχιστον ένας ακόμη πρώτος αριθμός πέραν εκείνων της λίστας.

Αυτό αποδεικνύει ότι για κάθε πεπερασμένη λίστα πρώτων αριθμών, υπάρχει ένας πρώτος αριθμός, που δεν βρίσκεται στη λίστα. Άρα οι πρώτοι αριθμοί είναι άπειροι σε πλήθος.

Η απόδειξη αυτή του Ευκλείδη θεωρείται από τις κομψότερες αποδείξεις στην ιστορία των μαθηματικών.

 

Στοιχεία
Ένα κομμάτι παπύρου των Στοιχείων του Ευκλείδη, που χρονολογείται περίπου στο 75-125 μ.Χ.



Πηγές: 

Σημειώσεις Θεωρίας Αριθμών, Α. Θωμά, Πανεπιστήμιο Ιωαννίνων

Μαθηματικά  Ομάδας Προσανατολισμού Θετικών Σπουδών Β΄ Γενικού Λυκείου, ΙΤΥΕ "ΔΙΟΦΑΝΤΟΣ", 2021

Wikipedia.org