Εμφάνιση αναρτήσεων με ετικέτα παράδοξα. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα παράδοξα. Εμφάνιση όλων των αναρτήσεων

Τρίτη 15 Οκτωβρίου 2024

Πόσες φορές μπορεί να διπλωθεί ένα χαρτί;


Πόσες φορές μπορεί να διπλωθεί ένα χαρτί;
Το origami είναι η τέχνη του διπλώματος χαρτιού, αλλά μέχρι πόσες φορές μπορείς να διπλώσεις ένα χαρτί στη μέση;
(Image credit: Aliaksandr Barysenka / EyeEm via Getty Images)


Μια κόλλα χαρτί, σαν τις φωτοτυπίες που δίνω στους μαθητές μου, μπορεί να διπλωθεί στη μέση οριακά μέχρι και 7 φορές. Μπορείτε να το διαπιστώσετε εύκολα και μόνοι σας, διπλώνοντας μια κόλλα Α4. Είναι αδύνατο να διπλωθεί το χαρτί πάνω από 7 φορές! Αυτό οφείλεται στο γεγονός ότι με κάθε δίπλωση, το πάχος του χαρτιού διπλασιάζεται. Αυτού του είδους η αύξηση που γίνεται  στο πάχος του χαρτιού λέγεται εκθετική αύξηση.

Πόσες φορές πιστεύετε ότι θα χρειαστεί να διπλώσετε ένα τέτοιο χαρτί (οσοδήποτε μεγάλο) ώστε το χαρτί αυτό διπλωμένο να έχει πάχος όσο η απόσταση της Γης από τη Σελήνη;



Πόσες φορές μπορεί να διπλωθεί ένα χαρτί ώστε το χαρτί αυτό διπλωμένο να έχει πάχος όσο η απόσταση της Γης από τη Σελήνη;;


Η απάντηση είναι παράδοξη και αντιβαίνει στη λογική μας: είναι μόλις... 39 φορές! Αλλά οι αριθμοί λένε την αλήθεια. 

Σκεφτείτε ότι αν μπορούσατε να διπλώσετε ένα χαρτί πάχους 0,8 χιλιοστών 17 φορές, το χαρτί αυτό διπλωμένο θα είχε πάχος \(0,0008 \cdot 2^{17}=104,9\) μέτρα, δηλαδή θα έφτανε το ύψος ενός ουρανοξύστη. 

Με 20 αναδιπλώσεις έχουμε πάχος 838,86 μέτρα.

Με 30 αναδιπλώσεις έχουμε πάχος σχεδόν 100 χιλιόμετρα και φτάνουμε στη θερμόσφαιρα.

Με 39 αναδιπλώσεις έχουμε πάχος περίπου 439.804, ξεπερνώντας τη Σελήνη.

Με 48 αναδιπλώσεις, θεωρητικά πάντα, φτάνουμε στον Ήλιο! 

Αν είμαστε αρκετά εργατικοί και... μερακλήδες και διπλώσουμε το χαρτί 85 φορές, έχουμε φτάσει στο γαλαξία της Ανδρομέδας, που απέχει από τη Γη περίπου 2,5 εκατομμύρια έτη φωτός!



Δείτε στο παρακάτω βίντεο από το κανάλι TED-Ed, ότι διπλώνοντας ένα ιδιαίτερα λεπτό χαρτί, πάχους 0,01 χιλιοστών 40 φορές, φτάνουμε έναν δορυφόρο GPS. Αν το διπλώσουμε 45 φορές φτάνουμε στη Σελήνη, ενώ αν το διπλώσουμε άλλη μία φορά, επιστρέφουμε πίσω στη Γη...



Ας είμαστε, όμως, ρεαλιστές. Δεν έχουμε τόσο πολύ χαρτί για να διπλώσουμε. Το 2002, λοιπόν, μια μαθήτρια Λυκείου από την Καλιφόρνια, η Britney Gallivan, θέλησε να διπλώσει ένα χαρτί πάνω από 7 φορές, καταρρίπτοντας το "μύθο". Το κατάφερε, διπλώνοντας χαρτί υγείας μήκους 1.200 μέτρων 12 φορές, πάντα προς την ίδια κατεύθυνση, κατακτώντας έτσι το ρεκόρ Guinness. Μάλιστα υπολόγισε τις διαστάσεις που πρέπει να έχει αρχικά το χαρτί, ώστε να μπορεί να διπλωθεί \(n\) φορές. Σύμφωνα με την Gallivan, είναι: 

όπου t το πάχος του χαρτιού, n το πλήθος των διπλώσεων, L το μήκος του χαρτιού και W το πλάτος του.



Το 2005, με το συγκεκριμένο ζήτημα ασχολήθηκε και η γνωστή εκπομπή Mythbusters, διπλώνοντας χαρτί επιφάνειας όσο ένα γήπεδο ποδοσφαίρου 11 φορές!




Το 2011, μια ομάδα μαθητών στο Southborough της Μασαχουσέτης, υπό την επίβλεψη του καθηγητή τους, Mark Tanton, δίπλωσαν χαρτί υγείας σχεδόν 4 χιλιομέτρων 13 φορές, σε έναν τεράστιο διάδρομο 250 μέτρων στο MIT. Στο διάδρομο αυτό, αφού δεν είχαν προβλήματα με ανέμους, τα κατάφεραν μετά από 4 περίπου ώρες. Αν και κατέρριψαν το προηγούμενο ρεκόρ, δεν έχουν καταγραφεί στο βιβλίο Guinness. Φαίνεται πως δεν ενθαρρύνεται η προσπάθεια κατάρριψης ρεκόρ διπλώματος χαρτιού για οικολογικούς λόγους!


Παρασκευή 1 Απριλίου 2022

Το παράδοξο του ψεύτη... Από τον Επιμενίδη στο Star Trek και ο γρίφος του γελωτοποιού



O Επιμενίδης από την Κρήτη (6ος αιώνας π.Χ.) ήταν θρησκευτικός διδάσκαλος, προφήτης και μάντης και είναι περισσότερο γνωστός για ένα λογικό παράδοξο που έχει συνδεθεί με το όνομά του. Η λέξη "παράδοξο" (παρά την δόξα) σημαίνει ό,τι είναι αντίθετο με την κοινή λογική, την καθιερωμένη άποψη και τη λογική συνέπεια. Ο Επιμενίδης, λοιπόν, έγραψε κάποτε:

"Οι Κρητικοί λένε πάντα ψέματα".

Αν σκεφτείτε καλά την παραπάνω πρόταση, θα δείτε ότι οδηγεί σε φαύλο κύκλο. Αν οι Κρητικοί λένε πάντα ψέματα, τότε και ο Επιμενίδης, ως Κρητικός λέει ψέματα. Άρα δεν αληθεύει η παραπάνω πρόταση, δηλαδή οι Κρητικοί δεν λένε πάντα ψέματα. Τότε όμως και ο Επιμενίδης δεν ψεύδεται κ.ο.κ. 


Κάποιοι βέβαια θα σκεφτούν ότι το παράδοξο αυτό επιλύεται πολύ εύκολα, αφού στην προηγούμενη πρόταση κάνουμε μια εσφαλμένη γενίκευση. Στη ζωή του ένας άνθρωπος λέει και ψέματα και αλήθειες. Ποτέ όμως ταυτόχρονα. Δεν είναι δυνατόν όλοι οι Κρητικοί να λένε ψέματα και μάλιστα ταυτόχρονα... 


Τα πράγματα, όμως, δεν είναι τόσο απλά, αφού δεν είναι αυτή η ουσία του παραδόξου. Ας ξεχάσουμε τους Κρητικούς και ας δούμε μια πρόταση, όπως οι κλασικές προτάσεις στα Μαθηματικά, που τις χειριζόμαστε με τη δίτιμη λογική των Μαθηματικών (και της Πληροφορικής), αληθής ή ψευδής:

"Αυτή η πρόταση είναι ψευδής".

Έστω ότι η παραπάνω πρόταση είναι αληθής. Τότε, σύμφωνα με αυτήν, είναι ψευδής. 

Έστω ότι η παραπάνω πρόταση είναι ψευδής. Τότε, αφού δεν ισχύει αυτό που λέει, δηλαδή δεν είναι ψευδής, η πρόταση αυτή είναι αληθής. Τελικά τι είναι;


Η πρόταση αυτή είναι ταυτόχρονα αληθής και ψευδής. Το παράδοξο του Επιμενίδη ανήκει σε μια γενικότερη κατηγορία παραδόξων, τα λεγόμενα "παράδοξα του ψεύτη". Οι φιλόσοφοι χρησιμοποίησαν κατά καιρούς τα παράδοξα για να αντικρούσουν την πλάνη των αισθήσεων. Αντιθέτως, οι μαθηματικοί μάλλον τα αντιμετώπιζαν με τρόμο. Ήταν κάτι σαν το κουτί της Πανδώρας, που αν το ανοίξεις μπορεί να καταστραφεί όλο το μαθηματικό οικοδόμημα σε μια στιγμή! Τουλάχιστον αυτό ίσχυε μέχρι τα μέσα του 19ου αιώνα, οπότε και τα παράδοξα άρχισαν να αντιμετωπίζονται με τρόπο περισσότερο εποικοδομητικό. 



Στο επεισόδιο "I, Mudd" του Star Trek - The Original Series (Season 2) γίνεται μια πετυχημένη αναφορά στο παράδοξο του ψεύτη. To πλήρωμα του Εντερπράιζ απάγεται και κρατείται σε έναν πλανήτη έξυπνων ανδροειδών. Με το τέχνασμα μιας έκρηξης, ο Κερκ και ο απατεώνας Χάρι Μαντ μπερδεύουν τον Νόρμαν, τον ηγέτη των ανδροειδών, χρησιμοποιώντας το παράδοξο του ψεύτη:

ΝΟΡΜΑΝ: Μα δεν υπήρξε έκρηξη...

ΜΑΝΤ: Είπα ψέματα.

ΝΟΡΜΑΝ: Τι;

ΚΕΡΚ: Είπε ψέματα. Όλα όσα σου λέει ο Χάρι είναι ψέματα. Να ξέρεις ότι όλα όσα σου λέει ο Χάρι είναι ένα ψέμα.

ΜΑΝΤ: Άκου με προσεκτικά, Νόρμαν. Σου λέω ψέματα.

ΝΟΡΜΑΝ: Λες ότι είσαι ψεύτης, αλλά αν ό,τι λες είναι ψέμα, τότε λες την αλήθεια, αλλά δεν μπορείς να πεις την αλήθεια, επειδή ό,τι λες είναι ψέματα. Λες ψέματα... Λες την αλήθεια... Αλλά δεν μπορείς να... Παράλογο! Παράλογο! Παρακαλώ εξηγήστε... Μόνο οι άνθρωποι μπορούν να το εξηγήσουν...

Επειδή ο Νόρμαν δεν μπορεί να επιλύσει το παράδοξο, το κεφάλι του αρχίζει να βγάζει καπνούς, ώσπου "μένει στον τόπο", αφήνοντας το πλήρωμα του Εντερπράιζ να δραπετεύσει.




Τέλος, ένας γρίφος λογικής που σχετίζεται με το σημερινό θέμα: 

Ένας βασιλιάς, που είχε βαρεθεί το γελωτοποιό του και έψαχνε αφορμή να τον ξεφορτωθεί, τον κάλεσε και του είπε: "Πες κάτι, ό,τι θέλεις. Αν αυτό που θα πεις είναι ψέμα, θα σε κρεμάσω. Αν αυτό που θα πεις είναι αλήθεια, θα σε σφάξω". Ο γελωτοποιός στάθηκε για λίγο σκεπτικός και έπειτα είπε κάτι στον βασιλιά. Και έζησε!

Τι του είπε;;; 


*~*-.-*~*-.-*~*


Πηγές και αναφορές:
Αναπολιτάνος Διονύσιος, Εισαγωγή στη Φιλοσοφία των Μαθηματικών, Εκδόσεις Νεφέλη, 1961
Επιμενίδης - Βικιπαίδεια
Θαλής + φίλοι

Δευτέρα 26 Ιουλίου 2021

Τα Μαθηματικά στην Τέχνη: Η Σάλπιγγα του Γαβριήλ & ένα παράδοξο!

 

Η σάλπιγγα του Γαβριήλ
Γλυπτό όπου απεικονίζεται ο Αρχάγγελος Γαβριήλ φυσώντας τη σάλπιγγά του για να αναγγείλει την Ημέρα της Κρίσης


Η Σάλπιγγα (ή κέρας) του Γαβριήλ που απεικονίζεται στο παραπάνω γλυπτό έδωσε (δικαιολογημένα) το όνομά της σε μια επιφάνεια, με την οποία ασχολήθηκε διεξοδικά ο Evangelista Torricelli (1608-1647), μαθητής του Γαλιλαίου, προσπαθώντας να λύσει ένα παράδοξο. Η λέξη "παράδοξο" σημαίνει ότι αν επιχειρήσουμε να χρησιμοποιήσουμε τη διαίσθησή μας για να το ερμηνεύσουμε, αυτό φαίνεται παράλογο. Στον φυσικό κόσμο ίσως και να είναι όντως αδύνατο να συμβεί. Όμως, μαθηματικά, όλα είναι σωστά! Και δεν μπορείς να φέρεις αντίρρηση στα μαθηματικά...


Angel Playing A Flageolet
Lady Lindsay Blanche (1844-1912) - "Angel Playing a Flageolet"


Τα βιβλία γράφουν...

Η Σάλπιγγα του Γαβριήλ (Gabriel's horn, ή Torricelli's trumpet) είναι μια επιφάνεια εκ περιστροφής που προκύπτει αν πάρουμε τη γραφική παράσταση της συνάρτησης  \(y=\frac{1}{x} \), με \( x \geq 1\) και την περιστρέψουμε στις τρεις διαστάσεις γύρω από τον άξονα των \(x\).

Περισσότερα γύρω από τις επιφάνειες εκ περιστροφής, μπορείτε να διαβάσετε εδώ...


russell kightley
Russell Kightley (σύγχρονος επιστημονικός γραφίστας) - "Gabriel's Horn"

Για τη συγκεκριμένη επιφάνεια, ο Torricelli παρατήρησε το 1641 το εξής παράδοξο, γνωστό πλέον και ως το παράδοξο του ελαιοχρωματιστή:


  • Αρχικά υπολόγισε τον όγκο που περιέχεται από την επιφάνεια της σάλπιγγας του Γαβριήλ. Ουσιαστικά, για να βρούμε τον όγκο που περιέχεται από την επιφάνεια εκ περιστροφής, αρκεί να προσθέσουμε τα εμβαδά όλων των κύκλων της επιφάνειας. Δεδομένου ότι το εμβαδόν ενός κύκλου με ακτίνα \(r\) είναι \(A=\pi r^2\) και η ακτίνα \(r\) στη θέση \(x\) ισούται με \( r=y=\frac{1}{x} \), προκύπτει ότι 


Επομένως ο όγκος της σάλπιγγας του Γαβριήλ βρίσκεται αν υπολογίσουμε το ολοκλήρωμα


Δηλαδή ο όγκος που περικλείεται από τη σάλπιγγα του Γαβριήλ είναι \( \pi\) κυβικές μονάδες.

  • Μετά τον υπολογισμό του όγκου, ο Torricelli θέλησε να βρει και το εμβαδόν της επιφάνειας εκ περιστροφής. Δεδομένου ότι η περίμετρος ενός κύκλου με ακτίνα \(r\) είναι \(L=2 \pi r\) και η ακτίνα \(r\) στη θέση \(x\) ισούται με \( r=y=\frac{1}{x} \), προκύπτει τελικά το επιφανειακό ολοκλήρωμα 


Δηλαδή το εμβαδόν της επιφάνειας είναι άπειρο! Με άλλα λόγια, έχουμε περιστρέψει μια άπειρη περιοχή γύρω από μια ευθεία και πήραμε έναν πεπερασμένο όγκο! Το παράδοξο του ελαιοχρωματιστή, λοιπόν, μας λέει ότι μπορούμε να γεμίσουμε τη σάλπιγγα του Γαβριήλ με \( \pi \simeq 3,14\) κυβικές μονάδες χρώματος, αλλά δεν υπάρχει αρκετή μπογιά στον κόσμο για να χρωματίσουμε το εξωτερικό της!

Να σημειώσουμε ότι ο Evangelista Torricelli δεν έκανε τους υπολογισμούς του με τη χρήση ολοκληρωμάτων, αφού ο ολοκληρωτικός λογισμός δεν είχε ακόμη επινοηθεί. Στην πραγματικότητα, χρησιμοποίησε μια τεχνική που ονομάζεται μέθοδος του Cavalieri. Αλλά δεν μπορούσε να βγάλει άκρη! Πώς είναι δυνατόν μια επιφάνεια με άπειρο εμβαδόν να περικλείει έναν πεπερασμένο όγκο;


"Gabriel's Horn"
"Gabriel's Horn"


Πού οφείλεται λοιπόν το παράδοξο αυτό; Έχετε στο νου σας ότι εδώ κάνουμε Μαθηματικά, όχι Φυσική ή άλλες επιστήμες που επιχειρούν να εξηγήσουν το σύμπαν... Η απάντηση είναι πως δεν είναι έγκυρο να υποθέσουμε ότι μπορούμε να εκτελέσουμε διαδικασίες μόνο και μόνο επειδή αυτές συσχετίζονται με πεπερασμένα μεγέθη. H σάλπιγγα του Γαβριήλ είναι μια άπειρη επιφάνεια. Έτσι, είναι δεκτό ότι δεν μπορούμε να βάψουμε την επιφάνεια αυτή, επειδή δεν έχουμε άπειρη μπογιά. Όμως είναι λάθος να συμπεράνουμε ότι μπορούμε να γεμίσουμε το εσωτερικό της, απλώς επειδή υπάρχει η συνολική ποσότητα χρώματος που απαιτείται. Η διαδικασία γεμίσματος δεν θα μπορούσε να γίνει σε πεπερασμένο χρόνο, αφού πρόκειται για μια άπειρη επιφάνεια, δηλαδή δεν έχει τέλος...



Πηγές:

Mathemania: Gabriel's Horn

Russell Kightley

Sarah Colegrave Fine Art

That's Maths: Torricelli's Trumpet & The Painter's Paradox

Wikipedia | Gabriel's Horn

YouTube | Gabriel's Horn Paradox - Numberphile

YouTube | Gabriel's Horn (extra) - Numberphile

Σάββατο 16 Μαΐου 2020

Ξενοδοχείο "Το Άπειρον"



Το 1924, ο David Hilbert εισήγαγε ένα νοητικό πείραμα που αναδεικνύει τις παράδοξες ιδιότητες του απείρου, καθιστώντας φανερό το πόσο δύσκολο είναι για το... πεπερασμένων δυνατοτήτων μυαλό των ανθρώπων να συλλάβει την έννοια του απείρου.


Φανταστείτε ότι είστε ρεσεψιονίστας στο ξενοδοχείο "Το Άπειρον", ένα ξενοδοχείο με άπειρα δωμάτια. Ένα βράδυ, και ενώ όλα τα δωμάτια είναι κατειλημμένα, ένας πελάτης μπαίνει στο ξενοδοχείο. Μπορείτε να του βρείτε δωμάτιο; 

Σύμφωνα με τον Hilbert, ο ρεσεψιονίστας μπορεί να βρει δωμάτιο στον νέο πελάτη! Πώς;

Θα ζητήσει από αυτόν που μένει στο δωμάτιο 1 να μεταφερθεί στο δωμάτιο 2.
Αυτός που μένει στο δωμάτιο 2 θα μεταφερθεί στο δωμάτιο 3.
Αυτός που μένει στο δωμάτιο 3 θα μεταφερθεί στο δωμάτιο 4 κ.ο.κ.
...
Αυτός που μένει στο δωμάτιο ν θα μεταφερθεί στο δωμάτιο ν+1.
Έτσι όλοι οι πελάτες έχουν βολευτεί και το δωμάτιο 1 είναι ελεύθερο για τον νέο πελάτη.


Το επόμενο βράδυ, και ενώ όλα τα δωμάτια είναι ακόμη κατειλημμένα, φτάνει στο ξενοδοχείο "Το Άπειρον" ένα λεωφορείο με 50 επιβάτες, που θέλουν να διανυκτερεύσουν στο ξενοδοχείο. Τι θα κάνει ο ρεσεψιονίστας;

Θα ζητήσει από αυτόν που μένει στο δωμάτιο 1 να μεταφερθεί στο δωμάτιο 51.
Αυτός που μένει στο δωμάτιο 2 θα μεταφερθεί στο δωμάτιο 52 κ.ο.κ.
...
Αυτός που μένει στο δωμάτιο ν θα μεταφερθεί στο δωμάτιο ν+50.
Έτσι θα μείνουν ελεύθερα τα 50 πρώτα δωμάτια.


Αφού υπάρχουν άπειρα δωμάτια, υπάρχουν πάντα δωμάτια για νέους φιλοξενούμενους. Αλλά το επόμενο βράδυ, και ενώ όλα τα δωμάτια είναι ακόμη κατειλημμένα, φτάνει στο ξενοδοχείο "Το Άπειρο" ένα λεωφορείο με άπειρους επιβάτες, που θέλουν να διανυκτερεύσουν στο ξενοδοχείο. Ο ρεσεψιονίστας τα χάνει.

Ο Hilbert προτείνει τώρα το εξής:
Αυτός που μένει στο δωμάτιο 1 θα μεταφερθεί στο δωμάτιο 2.
Αυτός που μένει στο δωμάτιο 2 θα μεταφερθεί στο δωμάτιο 4.
Αυτός που μένει στο δωμάτιο 3 θα μεταφερθεί στο δωμάτιο 6 κ.ο.κ.
...
Αυτός που μένει στο δωμάτιο ν θα μεταφερθεί στο δωμάτιο 2ν.


Έτσι, οι άπειροι ένοικοι του ξενοδοχείου γεμίζουν μόνο τα δωμάτια με άρτιο αριθμό (που είναι άπειρα σε πλήθος), ενώ τα δωμάτια με περιττό αριθμό (επίσης άπειρα) μένουν ελεύθερα για τους νέους, άπειρους πελάτες.



Το κλειδί για την κατανόηση αυτού του παραδόξου είναι πως οι φυσικοί αριθμοί είναι άπειροι σε πλήθος, όπως άπειροι είναι και οι άρτιοι και περιττοί αριθμοί, οι οποίοι μαζί απαρτίζουν τους φυσικούς.


Ένα βράδυ, ενώ τα δωμάτια του ξενοδοχείου είναι ακόμη όλα κατειλημμένα, φτάνει στην είσοδο μια άπειρη ουρά με απείρως μεγάλα τουριστικά λεωφορεία, με άπειρους επιβάτες στο καθένα. Ο ρεσεψιονίστας προς στιγμήν απελπίζεται.

Ευτυχώς, ο Ευκλείδης γύρω στο 300 π.Χ. είχε αποδείξει πως υπάρχουν άπειροι πρώτοι αριθμοί. Οι πρώτοι αριθμοί είναι: 2, 3, 5, 7, 11, 13, 17, 19, ... και είναι άπειροι σε πλήθος. Έτσι, χρησιμοποιώντας τους πρώτους αριθμούς, ο ρεσεψιονίστας μπορεί πάλι να βρει δωμάτιο στους νέους πελάτες:

Ξεκινάμε με τις δυνάμεις του μικρότερου πρώτου αριθμού, του 2.
Αυτός που μένει στο δωμάτιο 1 θα μεταφερθεί στο δωμάτιο 21 = 2.
Αυτός που μένει στο δωμάτιο 2 θα μεταφερθεί στο δωμάτιο 22 = 4.
Αυτός που μένει στο δωμάτιο 3 θα μεταφερθεί στο δωμάτιο 23 = 8 κ.ο.κ.
...
Αυτός που μένει στο δωμάτιο ν θα μεταφερθεί στο δωμάτιο 2ν.



Έπειτα ο ρεσεψιονίστας φωνάζει τους επιβάτες του πρώτου λεωφορείου και τους τοποθετεί στα δωμάτια που είναι δυνάμεις του επόμενου πρώτου αριθμού, του 3.
Αυτός που καθόταν στη θέση 1 του λεωφορείου, θα μείνει στο δωμάτιο 31 = 3.
Αυτός που καθόταν στη θέση 2 του λεωφορείου, θα μείνει στο δωμάτιο 32 = 9 κ.ο.κ.
..
Αυτός που καθόταν στη θέση ν του λεωφορείου, θα μείνει  στο δωμάτιο 3ν.

Για τους επιβάτες του δεύτερου λεωφορείου, θα χρησιμοποιήσουμε τις δυνάμεις του 5.
Αυτός που καθόταν στη θέση 1 του λεωφορείου, θα μείνει στο δωμάτιο 51 = 5.
Αυτός που καθόταν στη θέση 2 του λεωφορείου, θα μείνει στο δωμάτιο 52 = 25 κ.ο.κ.
..
Αυτός που καθόταν στη θέση ν του λεωφορείου, θα μείνει  στο δωμάτιο 5ν.

Όμοια, οι επιβάτες του τρίτου λεωφορείου θα διαμείνουν στα δωμάτια που είναι δυνάμεις του 7.
Οι επιβάτες του επόμενου λεωφορείου θα διαμείνουν στα δωμάτια που είναι δυνάμεις του 11.
Συνεχίζουμε με τις δυνάμεις του 13, τις δυνάμεις του 17 κ.ο.κ.



Αφού καθένας από τους προηγούμενους αριθμούς είναι δύναμη με βάση έναν πρώτο αριθμό και εκθέτη έναν φυσικό αριθμό, είναι όλοι διαφορετικοί μεταξύ τους. Επομένως, δεν θα βρεθούν δύο διαφορετικοί ένοικοι στο ίδιο δωμάτιο. (Αν και πολλά δωμάτια, όπως το 1, το 6 ή το 10 θα μείνουν άδεια έτσι!!!)

Αυτό που χρειάζεται να κατανοήσουμε εδώ, είναι πως οι φυσικοί αριθμοί είναι άπειροι σε πλήθος, όπως άπειροι σε πλήθος είναι και οι πρώτοι αριθμοί, παρόλο που αποτελούν γνήσιο υποσύνολο των φυσικών. Όμως τα σύνολα των φυσικών, των πρώτων, αλλά και των αρτίων και των περιττών αριθμών, αν και άπειρα, είναι αριθμήσιμα. Αυτό σημαίνει ότι μπορεί να γίνει κάποιου είδους "καταμέτρηση" των φυσικών αριθμών. Αυτό είναι το πιο "απλό" άπειρο. Έτσι ο ρεσεψιονίστας μπορεί να διαχειριστεί τα άπειρα δωμάτια.

Αν κάποτε μείνετε στο ξενοδοχείο "Το Άπειρον", θα μπορέσετε να βγάλετε άκρη με το παράδοξο αυτό. Αλλά ίσως σας ξυπνήσει ο ρεσεψιονίστας τα ξημερώματα για να σας αλλάξει δωμάτιο...




Πηγές:

Παρασκευή 14 Ιουνίου 2019

Το παράδοξο του Monty Hall, το "DEAL", η ταινία "21" και οι πιθανότητες της σωστής επιλογής


Ο Monty Hall (1921 - 2017) ήταν παρουσιαστής του περίφημου τηλεπαιχνιδιού "Let's Make a Deal" στο ABC από το 1963 έως το 1977 και σε μερικές ακόμη σεζόν μέχρι και το 1991. Το τηλεπαιχνίδι αυτό είναι από τα πλέον ιστορικά που έχουν περάσει από την τηλεόραση και έχει επηρεάσει πολλά τηλεπαιχνίδια μέχρι και σήμερα, όπως και το ελληνικό "DEAL"...

Όμως, όταν κάποιος ακούει "Monty Hall", το μυαλό του δεν πάει στον παρουσιαστή, αλλά στο "παράδοξο του Monty Hall", ένα από τα μεγαλύτερα παράδοξα της επιστήμης των μαθηματικών και συγκεκριμένα των πιθανοτήτων. Όλα ξεκίνησαν το 1975, όταν ο στατιστικολόγος Steve Selvin δημοσίευσε ένα πρόβλημα βασισμένο στο συγκεκριμένο τηλεπαιχνίδι, το οποίο ονόμασε "Monty Hall Problem". Το παράδοξο (ή πρόβλημα) του Monty Hall έχει ως εξής:


Ας υποθέσουμε ότι βρίσκεσαι σε ένα τηλεπαιχνίδι. Εκεί υπάρχουν 3 πόρτες, η μία εκ των οποίων κρύβει ένα πολυτελές αυτοκίνητο, ενώ πίσω από τις δύο άλλες κρύβονται δύο κατσίκες.


τρεις πόρτες


Ο παρουσιαστής σου ζητά να επιλέξεις μία πόρτα. Το αυτοκίνητο μπορεί εξίσου να βρίσκεται πίσω από οποιαδήποτε πόρτα, έτσι κάθε πόρτα έχει πιθανότητα 1 στις 3 να κρύβει το αυτοκίνητο, δηλαδή 1/3.

κάθε πόρτα έχει πιθανότητα 1 στις 3 να κρύβει το αυτοκίνητο


Η πιθανότητα να επιλέξεις την πόρτα με το αυτοκίνητο (σωστή επιλογή) είναι 1/3, ενώ η πιθανότητα να κάνεις λανθασμένη επιλογή είναι 2/3.

Η πιθανότητα να επιλέξεις την πόρτα με το αυτοκίνητο (σωστή επιλογή) είναι μία στις τρεις, ενώ η πιθανότητα να κάνεις λανθασμένη επιλογή είναι δύο στις τρεις.


Έστω ότι επιλέγεις την 1η πόρτα. Η πιθανότητα να βρίσκεται το αυτοκίνητο πίσω από την 1η πόρτα είναι 1/3. Η πιθανότητα να βρίσκεται το αυτοκίνητο πίσω από τη 2η ή την 3η πόρτα είναι 2/3. Ο παρουσιαστής, που γνωρίζει πού βρίσκεται το αυτοκίνητο, δεν θα ανοίξει αμέσως την πόρτα που διάλεξες, αλλά θα καθυστερήσει λίγο, ανοίγοντας μια από τις άλλες δύο πόρτες,  π.χ. την 3η, η οποία, φυσικά, θα κρύβει μια κατσίκα.

Πίσω από την τρίτη πόρτα κρύβεται μια κατσίκα.

Εκείνη τη στιγμή σε ρωτάει αν θέλεις να παραμείνεις στην αρχική σου επιλογή ή να την αλλάξεις. Εσύ τι θα έκανες; Νομίζεις ότι τώρα οι πιθανότητές σου είναι 50-50; Πάντως η θεωρία των πιθανοτήτων αποδεικνύει ότι αν αλλάξεις την επιλογή σου έχεις διπλάσιες πιθανότητες να κερδίσεις!


Για να κατανοήσουμε το γιατί, πρέπει να σκεφτούμε ποιες είναι οι δυνατές στρατηγικές που μπορεί να ακολουθηθούν. Υπάρχουν 2 επιλογές:


  1. Εμμένεις στην αρχική σου επιλογή, ό,τι κι αν σου πει ο παρουσιαστής (στο παράδειγμά μας, επιλέγεις ξανά την 1η πόρτα). Η πιθανότητα της σωστής επιλογής παραμένει η ίδια, που είναι 1/3.
  2. Αλλάζεις και επιλέγεις την πόρτα που έχει απομείνει (στο παράδειγμα, την 2η πόρτα). Τώρα, αφού η 3η πόρτα είναι σίγουρο ότι ΔΕΝ κρύβει το αυτοκίνητο, η πιθανότητα να βρίσκεται το αυτοκίνητο πίσω από τη 2η πόρτα ταυτίζεται με την πιθανότητα να βρίσκεται πίσω από τη 2η ή την 3η πόρτα, επομένως 2/3.


Το αποτέλεσμα αυτό φυσικά εξαρτάται από το γεγονός ότι ο Monty πάντα γνωρίζει πού βρίσκεται το αυτοκίνητο και ανοίγει μια πόρτα με κατσίκα, ανεξάρτητα από τη δική σου αρχική επιλογή.


Ένας άλλος τρόπος για να κατανοήσουμε τη λύση του προβλήματος είναι μέσα από το ακόλουθο διάγραμμα:

Οι πιθανότητες να βρεις το αυτοκίνητο διπλασιάζονται, αν αλλάξεις την αρχική σου επιλογή.


Αναφορά του εν λόγω προβλήματος γίνεται και στην κινηματογραφική ταινία "21". Ο καθηγητής του M.I.T. Micky Rosa (Kevin Spacey) θέτει το πρόβλημα του Monty Hall στον ευφυή φοιτητή του Ben Campbell (Jim Sturgess), ο οποίος το λύνει σωστά εντυπωσιάζοντας τον καθηγητή του:




Για να διαβάσεις την αυστηρή μαθηματική απόδειξη του παραδόξου του Monty Hall, η οποία βασίζεται στο Θεώρημα Ολικής Πιθανότητας του Bayes, κάνε κλικ εδώ.


Ο Ron Clarke εξηγεί το "Monty Hall Problem" και την απάντηση στο πρόβλημα σε ένα πολύ ενδιαφέρον βίντεο, που είναι στα αγγλικά:



Αν θέλεις να δοκιμάσεις την τύχη σου και να παίξεις, κάνε κλικ εδώ...