Εμφάνιση αναρτήσεων με ετικέτα πιθανότητες. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα πιθανότητες. Εμφάνιση όλων των αναρτήσεων

Τρίτη 3 Δεκεμβρίου 2024

Γρίφοι: Νομίσματα σε κουτιά

 

Γρίφος #1

2 νομίσματα σε 3 κουτιά

Έχουμε 3 κουτιά, καθένα από τα οποία περιέχει 2 νομίσματα: Ένα κουτί περιέχει δύο χρυσά, ένα κουτί περιέχει δύο ασημένια και το τρίτο ένα χρυσό και ένα ασημένιο.

Επιλέξαμε ένα κουτί στην τύχη. Χωρίς να κοιτάξουμε μέσα, βγάλαμε έξω το ένα νόμισμα και αυτό ήταν ασημένιο. Αν βγάλουμε έξω και το δεύτερο νόμισμα, ποια είναι η πιθανότητα να είναι και αυτό ασημένιο;



Γρίφος #2

3 νομίσματα σε 4 κουτιά

Έχουμε 4 κουτιά, καθένα από τα οποία περιέχει 3 νομίσματα: Ένα κουτί περιέχει τρία χρυσά, ένα κουτί περιέχει τρία ασημένια, ένα κουτί περιέχει δύο χρυσά και ένα ασημένιο και το τελευταίο ένα χρυσό και δύο ασημένια.

Επιλέξαμε ένα κουτί στην τύχη. Χωρίς να κοιτάξουμε μέσα, βγάλαμε έξω το ένα νόμισμα και αυτό ήταν ασημένιο. Αν βγάλουμε έξω και ένα δεύτερο νόμισμα από το ίδιο κουτί, ποια είναι η πιθανότητα να είναι και αυτό ασημένιο;



Γρίφος #3

3 νομίσματα σε 4 κουτιά

Έχουμε 4 κουτιά, καθένα από τα οποία περιέχει 3 νομίσματα: Ένα κουτί περιέχει τρία χρυσά, ένα κουτί περιέχει τρία ασημένια, ένα κουτί περιέχει δύο χρυσά και ένα ασημένιο και το τελευταίο ένα χρυσό και δύο ασημένια.

Επιλέξαμε ένα κουτί στην τύχη. Χωρίς να κοιτάξουμε μέσα, βγάλαμε έξω δύο νομίσματα και ήταν και τα δύο ασημένια. Αν βγάλουμε έξω και το τρίτο νόμισμα από το κουτί, ποια είναι η πιθανότητα να είναι και αυτό ασημένιο;


Παρασκευή 14 Ιουνίου 2019

Το παράδοξο του Monty Hall, το "DEAL", η ταινία "21" και οι πιθανότητες της σωστής επιλογής


Ο Monty Hall (1921 - 2017) ήταν παρουσιαστής του περίφημου τηλεπαιχνιδιού "Let's Make a Deal" στο ABC από το 1963 έως το 1977 και σε μερικές ακόμη σεζόν μέχρι και το 1991. Το τηλεπαιχνίδι αυτό είναι από τα πλέον ιστορικά που έχουν περάσει από την τηλεόραση και έχει επηρεάσει πολλά τηλεπαιχνίδια μέχρι και σήμερα, όπως και το ελληνικό "DEAL"...

Όμως, όταν κάποιος ακούει "Monty Hall", το μυαλό του δεν πάει στον παρουσιαστή, αλλά στο "παράδοξο του Monty Hall", ένα από τα μεγαλύτερα παράδοξα της επιστήμης των μαθηματικών και συγκεκριμένα των πιθανοτήτων. Όλα ξεκίνησαν το 1975, όταν ο στατιστικολόγος Steve Selvin δημοσίευσε ένα πρόβλημα βασισμένο στο συγκεκριμένο τηλεπαιχνίδι, το οποίο ονόμασε "Monty Hall Problem". Το παράδοξο (ή πρόβλημα) του Monty Hall έχει ως εξής:


Ας υποθέσουμε ότι βρίσκεσαι σε ένα τηλεπαιχνίδι. Εκεί υπάρχουν 3 πόρτες, η μία εκ των οποίων κρύβει ένα πολυτελές αυτοκίνητο, ενώ πίσω από τις δύο άλλες κρύβονται δύο κατσίκες.


τρεις πόρτες


Ο παρουσιαστής σου ζητά να επιλέξεις μία πόρτα. Το αυτοκίνητο μπορεί εξίσου να βρίσκεται πίσω από οποιαδήποτε πόρτα, έτσι κάθε πόρτα έχει πιθανότητα 1 στις 3 να κρύβει το αυτοκίνητο, δηλαδή 1/3.

κάθε πόρτα έχει πιθανότητα 1 στις 3 να κρύβει το αυτοκίνητο


Η πιθανότητα να επιλέξεις την πόρτα με το αυτοκίνητο (σωστή επιλογή) είναι 1/3, ενώ η πιθανότητα να κάνεις λανθασμένη επιλογή είναι 2/3.

Η πιθανότητα να επιλέξεις την πόρτα με το αυτοκίνητο (σωστή επιλογή) είναι μία στις τρεις, ενώ η πιθανότητα να κάνεις λανθασμένη επιλογή είναι δύο στις τρεις.


Έστω ότι επιλέγεις την 1η πόρτα. Η πιθανότητα να βρίσκεται το αυτοκίνητο πίσω από την 1η πόρτα είναι 1/3. Η πιθανότητα να βρίσκεται το αυτοκίνητο πίσω από τη 2η ή την 3η πόρτα είναι 2/3. Ο παρουσιαστής, που γνωρίζει πού βρίσκεται το αυτοκίνητο, δεν θα ανοίξει αμέσως την πόρτα που διάλεξες, αλλά θα καθυστερήσει λίγο, ανοίγοντας μια από τις άλλες δύο πόρτες,  π.χ. την 3η, η οποία, φυσικά, θα κρύβει μια κατσίκα.

Πίσω από την τρίτη πόρτα κρύβεται μια κατσίκα.

Εκείνη τη στιγμή σε ρωτάει αν θέλεις να παραμείνεις στην αρχική σου επιλογή ή να την αλλάξεις. Εσύ τι θα έκανες; Νομίζεις ότι τώρα οι πιθανότητές σου είναι 50-50; Πάντως η θεωρία των πιθανοτήτων αποδεικνύει ότι αν αλλάξεις την επιλογή σου έχεις διπλάσιες πιθανότητες να κερδίσεις!


Για να κατανοήσουμε το γιατί, πρέπει να σκεφτούμε ποιες είναι οι δυνατές στρατηγικές που μπορεί να ακολουθηθούν. Υπάρχουν 2 επιλογές:


  1. Εμμένεις στην αρχική σου επιλογή, ό,τι κι αν σου πει ο παρουσιαστής (στο παράδειγμά μας, επιλέγεις ξανά την 1η πόρτα). Η πιθανότητα της σωστής επιλογής παραμένει η ίδια, που είναι 1/3.
  2. Αλλάζεις και επιλέγεις την πόρτα που έχει απομείνει (στο παράδειγμα, την 2η πόρτα). Τώρα, αφού η 3η πόρτα είναι σίγουρο ότι ΔΕΝ κρύβει το αυτοκίνητο, η πιθανότητα να βρίσκεται το αυτοκίνητο πίσω από τη 2η πόρτα ταυτίζεται με την πιθανότητα να βρίσκεται πίσω από τη 2η ή την 3η πόρτα, επομένως 2/3.


Το αποτέλεσμα αυτό φυσικά εξαρτάται από το γεγονός ότι ο Monty πάντα γνωρίζει πού βρίσκεται το αυτοκίνητο και ανοίγει μια πόρτα με κατσίκα, ανεξάρτητα από τη δική σου αρχική επιλογή.


Ένας άλλος τρόπος για να κατανοήσουμε τη λύση του προβλήματος είναι μέσα από το ακόλουθο διάγραμμα:

Οι πιθανότητες να βρεις το αυτοκίνητο διπλασιάζονται, αν αλλάξεις την αρχική σου επιλογή.


Αναφορά του εν λόγω προβλήματος γίνεται και στην κινηματογραφική ταινία "21". Ο καθηγητής του M.I.T. Micky Rosa (Kevin Spacey) θέτει το πρόβλημα του Monty Hall στον ευφυή φοιτητή του Ben Campbell (Jim Sturgess), ο οποίος το λύνει σωστά εντυπωσιάζοντας τον καθηγητή του:




Για να διαβάσεις την αυστηρή μαθηματική απόδειξη του παραδόξου του Monty Hall, η οποία βασίζεται στο Θεώρημα Ολικής Πιθανότητας του Bayes, κάνε κλικ εδώ.


Ο Ron Clarke εξηγεί το "Monty Hall Problem" και την απάντηση στο πρόβλημα σε ένα πολύ ενδιαφέρον βίντεο, που είναι στα αγγλικά:



Αν θέλεις να δοκιμάσεις την τύχη σου και να παίξεις, κάνε κλικ εδώ...