Εμφάνιση αναρτήσεων με ετικέτα ψυχαγωγικά μαθηματικά. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα ψυχαγωγικά μαθηματικά. Εμφάνιση όλων των αναρτήσεων

Δευτέρα 26 Ιανουαρίου 2026

Η "Επιπεδοχώρα" στον κινηματογράφο

Από το πειραματικό animation των 60’s στο εκπαιδευτικό animation του 21ου αιώνα

 

Η «Επιπεδοχώρα (Flatland: A Romance of Many Dimensions, 1884)» του Edwin A. Abbott είναι ένα από τα ελάχιστα λογοτεχνικά έργα που κατάφεραν να γεφυρώσουν με τόση επιτυχία τα μαθηματικά, τη φιλοσοφία και την κοινωνική σάτιρα. Δεν είναι τυχαίο ότι, παρά τη δυσκολία του θέματος, το έργο ενέπνευσε και τον κινηματογράφο...

Στη συνέχεια παρουσιάζονται τρεις βασικές animated κινηματογραφικές μεταφορές της «Επιπεδοχώρας», που καλύπτουν σχεδόν μισό αιώνα.


Flatland: The Movie (2007). Helios intimidates her Ministry employee, Arthur Square
Σκηνή από την ταινία animation Flatland: The Movie (2007)


 

1. Flatland (1965) – Ταινία μικρού μήκους

Πρόκειται για μια πειραματική ταινία κινουμένων σχεδίων μικρού μήκους (περίπου 10–11 λεπτά. Η ταινία αποδίδεται σε δημιουργούς του χώρου του εκπαιδευτικού και καλλιτεχνικού animation της εποχής (John Hubley, Eric Martin) και εντάσσεται στο πνεύμα των οπτικοακουστικών πειραματισμών των ’60s.

Η αφήγηση είναι λιτή και αφαιρετική, με έμφαση:

  • στη δισδιάστατη φύση της Επιπεδοχώρας,
  • στη δυσκολία των κατοίκων να συλλάβουν την έννοια της τρίτης διάστασης,
  • και λιγότερο στην κοινωνική σάτιρα του πρωτότυπου έργου.

Αποτελεί περισσότερο ένα οπτικό φιλοσοφικό σχόλιο παρά μια πλήρη αφήγηση της ιστορίας.

 




2. Flatland: The Movie (2007)

Η ταινία του 2007 είναι η πιο ολοκληρωμένη κινηματογραφική μεταφορά της «Επιπεδοχώρας». Πρόκειται για μεγάλου μήκους animation, σκηνοθετημένο από τον Ladd Ehlinger Jr., με στόχο κυρίως την εκπαιδευτική χρήση.

Η ταινία:

  • ακολουθεί πιο πιστά την πλοκή του βιβλίου,
  • παρουσιάζει καθαρά την κοινωνική ιεραρχία των σχημάτων,
  • δίνει έμφαση στη σύγκρουση ανάμεσα στην εμπειρική γνώση και τη νέα, «αδιανόητη» ιδέα της τρίτης διάστασης.

 




3. Flatland 2: Sphereland (2012)

Η ταινία Flatland 2: Sphereland (2012), επίσης σε σκηνοθεσία του Ladd Ehlinger Jr., βασίζεται στο «Sphereland: A Fantasy About Curved Spaces and an Expanding Universe, (1957)» τη συνέχεια του έργου του Abbott.

Σε αυτήν την εκδοχή:

  • η κοινωνική αλληγορία υποχωρεί,
  • το βάρος μετατοπίζεται στις ανώτερες διαστάσεις,
  • και αναδεικνύεται η δυσκολία κατανόησης αφηρημένων μαθηματικών εννοιών, ακόμη και από εκείνους που έχουν ήδη βιώσει μια «αποκάλυψη».

Η ταινία λειτουργεί περισσότερο ως φιλοσοφικό και μαθηματικό συμπλήρωμα της πρώτης.




 

Διδακτική αξιοποίηση των ταινιών

Οι κινηματογραφικές μεταφορές της «Επιπεδοχώρας» μπορούν, πέρα από ψυχαγωγικούς σκοπούς, να ιδωθούν και ως διδακτικά εργαλεία, που επιτρέπουν στους μαθητές να προσεγγίσουν τα μαθηματικά ως τρόπο σκέψης και όχι μόνο ως σύνολο τύπων. Εκπαιδευτικοί και γονείς μπορούν να τις αξιοποιήσουν με πολλούς τρόπους, ανάλογα με την κρίση τους και, φυσικά, τις ηλικίες των παιδιών:

Εισαγωγή στην έννοια των διαστάσεων

Μαθηματικά και κοινωνία

Γεωμετρία και Bauhaus

Μαθηματικά και Σύγχρονη Τέχνη

 

Γνωρίζετε άλλες ταινίες βασισμένες στην «Επιπεδοχώρα»; Εσείς πώς θα αξιοποιούσατε κάποια από αυτές τις ταινίες (ή το μυθιστόρημα) στη διδασκαλία σας/στη δημιουργική απασχόληση των παιδιών;

 

Τετάρτη 14 Ιανουαρίου 2026

Lewis Carroll: Η χώρα των θαυμάτων και το φάντασμα του Ευκλείδη

 

14 Ιανουαρίου 1898, φεύγει από τη ζωή ο Charles Lutwidge Dodgson, κατά κόσμον γνωστός ως Lewis Carroll (Λιούις Κάρολ).

Ο Lewis Carroll γεννήθηκε το 1832 στο Cheshire της Αγγλίας και στη διάρκεια της ζωής του απέκτησε τις ιδιότητες του συγγραφέα, του μαθηματικού, του ιερέα και του φωτογράφου. Παγκόσμια φήμη όμως έλαβε χάρη στο βιβλίο του “Οι περιπέτειες της Αλίκης στη χώρα των θαυμάτων”, ένα έργο που έχει διαβαστεί από εκατομμύρια ανθρώπους σε όλο τον κόσμο και μέχρι σήμερα συνεχίζει να γοητεύει αναγνώστες κάθε ηλικίας.

 

 

Lewis Carroll

 

Το συγκεκριμένο βιβλίο εκδόθηκε για πρώτη φορά το 1865 για την εντεκάχρονη Alice Liddel και τις αδελφές της και αποτελεί ένα διανοητικό παιδικό παιχνίδι στο οποίο παραβιάζεται η καθιερωμένη λογική των ενηλίκων, ενώ έρχεται πιο κοντά με τον άλογο τρόπο που συνήθως τα μικρά παιδιά σκέφτονται και επιδρούν. Ο Carroll χρησιμοποιεί, με ένα μοναδικό σύστημα σε όλα τα κεφάλαια του βιβλίου, την αλληγορία, τις γνώσεις του στις θετικές επιστήμες και την μαθηματική λογική, αντεστραμμένες όμως και κυρίως με άφθονο χιούμορ και περιπέτεια.

Άλλα δημοφιλή έργα του θεωρούνται το “Κυνήγι του Φιρχαρία“, ένα ποίημα που δεν αναφέρεται στον παιδικό κόσμο, αλλά αποτελεί περισσότερο μια αλλόκοτη περιπέτεια με αρκετές δόσεις μαύρης ειρωνείας και το “Jabberwocky”, που αποτελεί ένα από τα σημαντικότερα δείγματα της παράδοξης λογοτεχνίας.

Ως μαθηματικός δίδαξε στο Christ College της Οξφόρδης, ενώ ήταν και υπότροφος της Christ Church, με την προϋπόθεση να ακολουθεί πιστά τα θρησκευτικά ήθη του κολεγίου, μεταξύ αυτών και την υποχρέωση να μην παντρευτεί, αν και στην εκκλησιαστική ιεραρχία δεν είχε την ανέλιξη που αναμενόταν.

Δημοσίευσε αρκετά βιβλία μαθηματικών που δεν διαβάστηκαν ιδιαίτερα, αφού δεν θεωρήθηκε ότι είχαν κάποια συμβολή στην ανάπτυξη της μαθηματικής επιστήμης, εκτός από ένα που παρουσιάζει κυρίως ιστορικό ενδιαφέρον.



Lewis Carroll Euclid and his modern rivals


Πρόκειται για το “Euclid and his modern rivals” που αναφέρεται στα "Στοιχεία" του Ευκλείδη και η πρωτοτυπία του είναι πως έχει γραφεί με την μορφή θεατρικού έργου, περιγράφοντας την εμφάνιση του φαντάσματος του Ευκλείδη στους μαθηματικούς της εποχής του, ενώ αποτελεί και σημείο αναφοράς για τα λογοτεχνικά κείμενα ψυχαγωγικών μαθηματικών.

 

Πηγές: FractalArt-Θανάσης Κοπάδης, Lewis Carroll Society


Σάββατο 5 Ιουλίου 2025

"Ο άνθρωπος που μετρούσε"


 Μια συλλογή από μαθηματικές περιπέτειες για νεαρούς αναγνώστες


"Ο άνθρωπος που μετρούσε"

Καλοκαίρι και δεν θα μπορούσαμε να παραλείψουμε την καθιερωμένη πρόταση βιβλίου για αυτόν τον μήνα… Ο «Άνθρωπος που μετρούσε» αποτελεί μια απολαυστική συλλογή μαθηματικών γρίφων, παρουσιασμένων μέσα από μια εξιστόρηση που θυμίζει «Χίλιες και μία νύχτες». Ο «Άνθρωπος που μετρούσε», ο ήρωας του βιβλίου, ταξιδεύει τον αναγνώστη στον εξωτικό αραβικό κόσμο του 1300, όπου με τις εξαιρετικές μαθηματικές ικανότητές του επιλύει διαφωνίες, παρέχει σοφές συμβουλές, αντιμετωπίζει και νικάει επικίνδυνους εχθρούς, κερδίζει φήμη και πλούτη και τέλος αμείβεται συναισθηματικά, αφού καταφέρνει να παντρευτεί την εκλεκτή της καρδιάς του. Καθώς ακολουθούμε τον ήρωά μας, μαθαίνουμε τις ιστορίες προγενέστερών του μαθηματικών, παρακολουθούμε τις νοητικές δοκιμασίες στις οποίες τον υποβάλλουν οι σύγχρονοί του σοφοί μέσω μαθηματικών γρίφων και θαυμάζουμε τις γνώσεις και την κρίση του, με τις οποίες κερδίζει τον σεβασμό και την αγάπη όλων.


Δευτέρα 7 Απριλίου 2025

Τα "Πανταζάρια": Πώς να κερδίζετε πάντα στα ζάρια!


Σας αρέσει ο τζόγος; Με τα "Πανταζάρια-6" θα τρελάνετε τον συμπαίκτη σας...

 

Τα "Πανταζάρια": Πώς να κερδίζετε πάντα στα ζάρια
Τα "Πανταζάρια-6" από το Μουσείο Γρίφων Μεγίστης


Τα "Πανταζάρια-6" είναι ιδιαίτερα. Πρόκειται για μη μεταβατικά ζάρια, μια εφαρμογή της Θεωρίας Πιθανοτήτων. Τα μη μεταβατικά ζάρια είναι γνωστά στο χώρο των ψυχαγωγικών μαθηματικών για το ιδιαίτερο χαρακτηριστικό τους, ότι δεν είναι "δίκαια"... Χρησιμοποιήθηκαν για πρώτη φορά από τον Μπράντλεϋ Έφρον (1970) με τέσσερα ζάρια, ενώ πρόσφατα ακολούθησαν άλλες εκδόσεις με διαφορετικό αριθμό ζαριών.  Περιέργως, κάνεις δεν χρησιμοποίησε έξι ζάρια που είναι πιο αποτελεσματικά και τα οποία, σε μια ριξιά, δίνουν μέσο όρο πιθανότητας νίκης πάνω από 74%. Έτσι, τα δημιούργησε ο κ. Πανταζής Χούλης στο Μουσείο Γρίφων Μεγίστης...



Στο παρακάτω βίντεο εξηγείται η ιδέα των μη μεταβατικών ζαριών:



Τρίτη 12 Νοεμβρίου 2024

Υπάρχει σε όλα λύση; Ταξίδι στον Κόσμο των Αρχαίων Ελληνικών Μαθηματικών...Ξανά και το 2024...

 

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος»!

 

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».

Διαδραστικές και ψηφιακές εφαρμογές, εκθέματα Εικονικής Πραγματικότητας, κείμενα, εντυπωσιακές προβολές και κατασκευές συνθέτουν μία μοναδική έκθεση, με την αξιοποίηση της σύγχρονης τεχνολογίας.

 

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».
Τα πλατωνικά στερεά

Πρόκειται για μια εντυπωσιακή έκθεση στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος» που αφορά την ιστορία των μαθηματικών και την ανάπτυξη της μαθηματικής σκέψης στον αρχαίο ελληνικό κόσμο, την επιρροή τους σε άλλες επιστήμες και τέχνες, όπως την αστρονομία, τη μαθηματική γεωγραφία και τη μουσική. Αναφέρεται στα πιο σημαντικά «επεισόδια» και πρόσωπα της ιστορίας των ελληνικών μαθηματικών, όπως ο Θαλής, ο Ευκλείδης και ο Πυθαγόρας.

  

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».
Ο διπλασιασμός του τετραγώνου



Μέσα από μια σειρά διαδραστικών δραστηριοτήτων, οι επισκέπτες έρχονται σε επαφή με τα αριθμητικά συστήματα των Αιγυπτίων και των Βαβυλωνίων. Εξοικειώνονται με το θεώρημα του Θαλή, τους τρίγωνους και τετράγωνους αριθμούς των Πυθαγορείων, το Πυθαγόρειο θεώρημα και την έννοια της μαθηματικής απόδειξης. Χάρη στον εκπαιδευτικό και ψυχαγωγικό χαρακτήρα της έκθεσης, οι επισκέπτες ανακαλύπτουν πώς τα μαθηματικά μπορούν να γίνουν ενδιαφέροντα, ευχάριστα και κατανοητά.

 

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».
Οι κωνικές τομές

Στην έκθεση θα…

…γράψουμε αριθμούς με βάση τα ιερογλυφικά σύμβολα των αρχαίων Αιγυπτίων και τη σφηνοειδή γραφή των Βαβυλώνιων.

…προσπαθήσουμε να μοιράσουμε ακριβώς 6 καρβέλια ψωμί σε 10 άνδρες και θα γνωρίσουμε τον τρόπο με τον οποίο οι αρχαίοι Αιγύπτιοι το κατάφεραν, όπως παρουσιάζεται στον πάπυρο Rhind, το εκτενέστερο και ένα από τα πιο γνωστά κείμενα των αιγυπτιακών μαθηματικών.

…αναζητήσουμε γύρω μας σχήματα, όπως έκανε ο Θαλής και οι Ίωνες φιλόσοφοι και θα τα σχηματίσουμε στην άμμο με ραβδί.

…μάθουμε πώς υπολόγισε ο Θαλής το ύψος της πυραμίδας του Χέοπα, μόνο με ένα σχοινί και με την παρατηρητικότητά του...

…γνωρίσουμε τον Πυθαγόρα, τον άνθρωπο που έβλεπε παντού αριθμούς και θα πειραματιστούμε με τη μουσική κλίμακα στο μονόχορδό του.

…αναρωτηθούμε για το εάν υπάρχει τελικά σε όλα λύση, με κανόνα και διαβήτη και θα γνωρίσουμε τα τρία άλυτα προβλήματα της αρχαιότητας.

…μάθουμε πώς το λουτρό ενός πανεπιστήμονα μαθηματικού της αρχαιότητας έγινε αφορμή για έναν θεμελιώδη νόμο της υδροστατικής και πώς έγινε διάσημη η λέξη «Εύρηκα».

…δούμε πώς ο Ερατοσθένης κατάφερε με ελάχιστα μέσα να υπολογίσει με μεγάλη ακρίβεια την περιφέρεια της Γης.

…πειραματιστούμε με τον άβακα, το εργαλείο με το οποίο έκαναν υπολογισμούς και πράξεις οι αρχαίοι.

…αναρωτηθούμε από πού αντλούμε τις γνώσεις μας για τα αρχαία ελληνικά μαθηματικά.

…λύσουμε ένα πρόβλημα πρακτικής αριθμητικής του 15ου αιώνα, στο οποίο θα βοηθήσουμε μια κυρία να βρει πόσα ήταν τα αυγά που κρατούσε πριν σπάσουν.


Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».
Επιλύοντας ένα πρόβλημα πρακτικής αριθμητικής του 15ου αιώνα

  

Ψηφιακές εφαρμογές συνυπάρχουν με φυσικά διαδραστικά εκθέματα, όπως κατασκευές και προσφέρουν στον επισκέπτη μια μοναδική «ζωντανή» περιήγηση στον κόσμο των αρχαίων ελληνικών μαθηματικών. Τα παιδιά μαθαίνουν παίζοντας και οι ενήλικοι μαγεύονται από τη γοητεία της μαθηματικής επιστήμης.

 

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».

Για πρώτη φορά, στην έκθεση θα βιώσετε μοναδικές εμπειρίες Εικονικής Πραγματικότητας χάρη στα προηγμένα προγράμματα του «Ελληνικού Κόσμου», της «Κιβωτού», το πρώτο σύστημα εικονικής πραγματικότητας στην Ελλάδα ή του «Εικονικού Κινηματογράφου».


Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».

Η έκθεση αρχικά είχε παρουσιαστεί στο Κέντρο Πολιτισμού "Ελληνικός Κόσμος" από το 2003 μέχρι το 2013. Έπειτα φιλοξενήθηκε στο χώρο της Δ.Ε.Θ. από το Σεπτέμβριο του 2022 μέχρι τον Μάρτιο του 2023 (την είχαμε παρουσιάσει τότε στο "εις το άπειρον" εδώ). Η νέα εμπλουτισμένη έκθεση, την οποία έχει επιμεληθεί η ομάδα του Ιδρύματος Μείζονος Ελληνισμού, αποτελεί συνέχεια της έκθεσης που είχε πραγματοποιηθεί με μεγάλη επιτυχία στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος» και είχε συγκροτηθεί με τη φροντίδα των επιστημόνων του ΙΜΕ, καθώς και με την ευγενική συμβολή της Ελληνικής Μαθηματικής Εταιρείας, ενώ η επιστημονική επιμέλεια της έκθεσης έφερε την υπογραφή του ειδικού της Ιστορίας των Μαθηματικών, καθηγητή Γιάννη Χριστιανίδη. Τη μουσειολογική μελέτη είχαν εκπονήσει η Αλεξάνδρα Νικηφορίδου, η Ανδρομάχη Γκαζή και η Θεανώ Μουσούρη, ενώ τη μουσειογραφική μελέτη είχε επιμεληθεί ο Σταμάτης Ζάννος.

 

🗓Έναρξη έκθεσης: 16 Νοεμβρίου 2024

📍Τοποθεσία: Κέντρο Πολιτισμού "Ελληνικός Κόσμος", Πειραιώς 254, Ταύρος

💻Περισσότερες πληροφορίες και εισιτήρια: Ελληνικός Κόσμος




Πέμπτη 31 Οκτωβρίου 2024

Παλινδρομικοί αριθμοί, "κακοί" πρώτοι αριθμοί και ο πρώτος αριθμός του Βηλφεγώρ

 

παλινδρομικοί αριθμοί


Τι είναι οι παλινδρομικοί αριθμοί;

Παλινδρομικοί ή παλίνδρομοι αριθμοί είναι αυτοί που διαβάζονται το ίδιο είτε ευθέως είτε αντίστροφα. Για παράδειγμα, οι αριθμοί 11, 363, 5225, 13931, 1234321, 20300302 είναι παλινδρομικοί. Τους παλινδρομικούς αριθμούς τους συναντάμε συχνά στα ψυχαγωγικά μαθηματικά, με εφαρμογές στα μαγικά τετράγωνα, τους κύβους του Ρούμπικ και σε σκακιστικά προβλήματα.

 

Κατασκευή παλινδρομικών αριθμών

Πώς μπορούμε να κατασκευάσουμε τέτοιους αριθμούς; Ας επιλέξουμε έναν τυχαίο αριθμό, για παράδειγμα το 83. Αντιστρέφουμε τη σειρά των ψηφίων, δηλαδή παίρνουμε το 38 και τον προσθέτουμε στον αρχικό μας αριθμό. Προκύπτει έτσι: 83+38=121, έχουμε δηλαδή έναν παλινδρομικό αριθμό.

Επιλέγουμε έναν άλλο τυχαίο αριθμό, για παράδειγμα το 67. Αντιστρέφουμε τη σειρά των ψηφίων του, δηλαδή παίρνουμε το 76 και τον προσθέτουμε στον αρχικό μας αριθμό. Έχουμε δηλαδή 67+76=143, που όμως δεν είναι παλινδρομικός. Τότε επαναλαμβάνουμε την ίδια διαδικασία κι έχουμε 143+341=484. Προέκυψε, δηλαδή, ένας παλινδρομικός αριθμός.

Η ιδιότητα αυτή που έχουν οι αριθμοί, να καταλήγουν σε παλινδρομικούς μετά από μερικές προσθέσεις με τον αντεστραμμένο εαυτό τους φαίνεται να ισχύει για όλους... Υπάρχουν όμως μερικοί αριθμοί για τους οποίους ακόμα δεν έχουμε καταλήξει σε παλίνδρομο παράγωγό τους. Ο μικρότερος από αυτούς, είναι το 196. Κατόπιν πολλών πράξεων, φτάσαμε σε αριθμό με 263.000.000 ψηφία, ο οποίος όμως συνέχιζε να μην είναι παλινδρομικός! Για αριθμούς μικρότερους του 10.000 απαιτούνται το πολύ 24 προσθέσεις και το ρεκόρ αυτό κατέχει ο αριθμός 89.


Πόσοι είναι οι παλινδρομικοί αριθμοί;

Γνωρίζουμε από τον Ευκλείδη ότι οι πρώτοι αριθμοί είναι άπειροι σε πλήθος. Ακόμη. όμως, δεν γνωρίζουμε με βεβαιότητα αν είναι άπειροι και οι παλινδρομικοί αριθμοί. 

💥Μπορείτε να υπολογίσετε πόσοι είναι οι τετραψήφιοι παλινδρομικοί αριθμοί;

 

Ο πρώτος αριθμός της… κολάσεως

Ο Clifford A. Pickover, διάσημος Αμερικανός συγγραφέας και αρθρογράφος, ερευνητής της IBM για πολλά χρόνια, έχει ασχοληθεί ιδιαίτερα με τους αριθμούς και την γοητεία που ασκούν στους ανθρώπους. Έχει συγγράψει δεκάδες βιβλία με ποικίλα θέματα, από τα μαθηματικά, τη φυσική, τους υπολογιστές και την ιατρική, μέχρι τις τέχνες, τους γρίφους και το θάνατο. Στόχος των βιβλίων του, που έχουν μεταφραστεί σε δεκάδες γλώσσες, είναι, όπως λέει ο ίδιος, η έκθεση σε ένα ευρύ κοινό των θαυμάτων της επιστήμης και των μαθηματικών, χρησιμοποιώντας όμως «παιχνιδιάρικες» έννοιες που θα τραβήξουν το ενδιαφέρον του κόσμου.


Belphegor’s prime

Ο ίδιος «βάφτισε» και έναν παλινδρομικό πρώτο αριθμό, τον 1.000.000.000.000.066.600.000.000.000.001 (\(10^{30} + 666 \cdot 10^{14} + 1\)), ο οποίος ανακαλύφθηκε από τον μαθηματικό Harvey Dubner, γνωστό για την συμβολή του στην πολύ δύσκολη διαδικασία εύρεσης μεγάλων πρώτων αριθμών. Ο συγκεκριμένος αυτός αριθμός έχει πολλές ιδιότητες και ως πρώτος, αλλά και ως παλινδρομικός. Αυτό, όμως, που κέντρισε το ενδιαφέρον στον Pickover είναι ότι έχει 13 μηδενικά αριστερά και 13 δεξιά του 666. Επιπλέον, το πλήθος των ψηφίων του είναι 31 (ο αριθμός 13 αντεστραμμένος).

Τον ονόμασε πρώτο αριθμό του Βηλφεγώρ (Belphegor's prime), ενός από τους επτά πρίγκιπες της κόλασης, ο οποίος δελεάζει τους θνητούς με το δώρο της ανακάλυψης και των εφευρέσεων. Προειδοποίησε τον κόσμο ότι ο αριθμός αυτός είναι απειλητικός και πως δεν πρέπει να τον κοιτάζουμε για πολλή ώρα, αλλά φυσικά στο τέλος εξηγεί ότι αυτά που γράφει δεν πρέπει να λαμβάνονται και πολύ στα σοβαρά!


Belphegor's prime is the palindromic prime number 1000000000000066600000000000001
Ο συμβολισμός του πρώτου αριθμού του Βηλφεγώρ με τον αριθμό π, ανάποδα!


Ο Pickover ήταν εκείνος που όρισε και τους βαμπιρικούς αριθμούς, για τους οποίους είχαμε μιλήσει (σε παλιότερο Halloween) εδώ…


"Κακοί" πρώτοι αριθμοί

Ο πρώτος αριθμός του Βηλφεγώρ ανήκει και στην κατηγορία των "κακών" πρώτων αριθμών, δηλαδή των πρώτων αριθμών που περιέχουν το 666 στα ψηφία τους. Στο παρακάτω βίντεο από το κανάλι Numberphile, παρουσιάζονται πολλοί από αυτούς τους... σατανικούς αριθμούς!





=========================================


Πηγές - Παραπομπές

Belphegor's prime: 1000000000000066600000000000001, by Dr. Cliff Pickover

Curioustem.org: Belphegor's prime

Googology Wiki: Belphegor's prime

Pickover.com

Thesspress.gr|Θανάσης Κοπάδης: Παλίνδρομοι αριθμοί, αριθμοί βαμπίρ και ο πρώτος αριθμός της κολάσεως

Wikipedia.org|Παλινδρομικός αριθμός

Wolfram Mathworld|Belphegor's prime

YouTube|Numberphile: The most evil number


Πέμπτη 24 Οκτωβρίου 2024

Γρίφος: Ρώσικη ρουλέτα


russian roulette


Σας έχουν απαγάγει, είστε δεμένοι σε μια καρέκλα και ο απαγωγέας σας αναγκάζει να παίξετε ρώσικη ρουλέτα. Παίρνει ένα περίστροφο, ανοίγει τον κύλινδρο και σας δείχνει τις έξι άδειες θαλάμες του κυλίνδρου του πιστολιού. Βάζει δύο σφαίρες σε δύο θαλάμες στο περίστροφο. Κλείνει το όπλο και περιστρέφει τον κύλινδρο. Σας βάζει το όπλο στο κεφάλι και πατάει τη σκανδάλη. Ακούτε μόνο το κλικ και καταλαβαίνετε ότι σταθήκατε πολύ τυχερός. "Θα πυροβολήσω ξανά", λέει, "θα ήθελες να τραβήξω τη σκανδάλη τώρα, ή προτιμάς να γυρίσω πρώτα τον κύλινδρο του περιστρόφου";

Ποια είναι η καλύτερη επιλογή επιβίωσης: 

1. αν ξέρετε ότι οι σφαίρες βρίσκονταν σε διαδοχικές θαλάμες;

2. αν ξέρετε ότι οι σφαίρες δεν βρίσκονταν σε διαδοχικές θαλάμες;



📚Πηγή γρίφου: Θανάσης Δρούγας: "Πώς να επιβιώνετε σε ερημονήσια και... άλλοι μαθηματικοί γρίφοι". Bookstars, 2024.


Τρίτη 15 Οκτωβρίου 2024

Πόσες φορές μπορεί να διπλωθεί ένα χαρτί;


Πόσες φορές μπορεί να διπλωθεί ένα χαρτί;
Το origami είναι η τέχνη του διπλώματος χαρτιού, αλλά μέχρι πόσες φορές μπορείς να διπλώσεις ένα χαρτί στη μέση;
(Image credit: Aliaksandr Barysenka / EyeEm via Getty Images)


Μια κόλλα χαρτί, σαν τις φωτοτυπίες που δίνω στους μαθητές μου, μπορεί να διπλωθεί στη μέση οριακά μέχρι και 7 φορές. Μπορείτε να το διαπιστώσετε εύκολα και μόνοι σας, διπλώνοντας μια κόλλα Α4. Είναι αδύνατο να διπλωθεί το χαρτί πάνω από 7 φορές! Αυτό οφείλεται στο γεγονός ότι με κάθε δίπλωση, το πάχος του χαρτιού διπλασιάζεται. Αυτού του είδους η αύξηση που γίνεται  στο πάχος του χαρτιού λέγεται εκθετική αύξηση.

Πόσες φορές πιστεύετε ότι θα χρειαστεί να διπλώσετε ένα τέτοιο χαρτί (οσοδήποτε μεγάλο) ώστε το χαρτί αυτό διπλωμένο να έχει πάχος όσο η απόσταση της Γης από τη Σελήνη;



Πόσες φορές μπορεί να διπλωθεί ένα χαρτί ώστε το χαρτί αυτό διπλωμένο να έχει πάχος όσο η απόσταση της Γης από τη Σελήνη;;


Η απάντηση είναι παράδοξη και αντιβαίνει στη λογική μας: είναι μόλις... 39 φορές! Αλλά οι αριθμοί λένε την αλήθεια. 

Σκεφτείτε ότι αν μπορούσατε να διπλώσετε ένα χαρτί πάχους 0,8 χιλιοστών 17 φορές, το χαρτί αυτό διπλωμένο θα είχε πάχος \(0,0008 \cdot 2^{17}=104,9\) μέτρα, δηλαδή θα έφτανε το ύψος ενός ουρανοξύστη. 

Με 20 αναδιπλώσεις έχουμε πάχος 838,86 μέτρα.

Με 30 αναδιπλώσεις έχουμε πάχος σχεδόν 100 χιλιόμετρα και φτάνουμε στη θερμόσφαιρα.

Με 39 αναδιπλώσεις έχουμε πάχος περίπου 439.804, ξεπερνώντας τη Σελήνη.

Με 48 αναδιπλώσεις, θεωρητικά πάντα, φτάνουμε στον Ήλιο! 

Αν είμαστε αρκετά εργατικοί και... μερακλήδες και διπλώσουμε το χαρτί 85 φορές, έχουμε φτάσει στο γαλαξία της Ανδρομέδας, που απέχει από τη Γη περίπου 2,5 εκατομμύρια έτη φωτός!



Δείτε στο παρακάτω βίντεο από το κανάλι TED-Ed, ότι διπλώνοντας ένα ιδιαίτερα λεπτό χαρτί, πάχους 0,01 χιλιοστών 40 φορές, φτάνουμε έναν δορυφόρο GPS. Αν το διπλώσουμε 45 φορές φτάνουμε στη Σελήνη, ενώ αν το διπλώσουμε άλλη μία φορά, επιστρέφουμε πίσω στη Γη...



Ας είμαστε, όμως, ρεαλιστές. Δεν έχουμε τόσο πολύ χαρτί για να διπλώσουμε. Το 2002, λοιπόν, μια μαθήτρια Λυκείου από την Καλιφόρνια, η Britney Gallivan, θέλησε να διπλώσει ένα χαρτί πάνω από 7 φορές, καταρρίπτοντας το "μύθο". Το κατάφερε, διπλώνοντας χαρτί υγείας μήκους 1.200 μέτρων 12 φορές, πάντα προς την ίδια κατεύθυνση, κατακτώντας έτσι το ρεκόρ Guinness. Μάλιστα υπολόγισε τις διαστάσεις που πρέπει να έχει αρχικά το χαρτί, ώστε να μπορεί να διπλωθεί \(n\) φορές. Σύμφωνα με την Gallivan, είναι: 

όπου t το πάχος του χαρτιού, n το πλήθος των διπλώσεων, L το μήκος του χαρτιού και W το πλάτος του.



Το 2005, με το συγκεκριμένο ζήτημα ασχολήθηκε και η γνωστή εκπομπή Mythbusters, διπλώνοντας χαρτί επιφάνειας όσο ένα γήπεδο ποδοσφαίρου 11 φορές!




Το 2011, μια ομάδα μαθητών στο Southborough της Μασαχουσέτης, υπό την επίβλεψη του καθηγητή τους, Mark Tanton, δίπλωσαν χαρτί υγείας σχεδόν 4 χιλιομέτρων 13 φορές, σε έναν τεράστιο διάδρομο 250 μέτρων στο MIT. Στο διάδρομο αυτό, αφού δεν είχαν προβλήματα με ανέμους, τα κατάφεραν μετά από 4 περίπου ώρες. Αν και κατέρριψαν το προηγούμενο ρεκόρ, δεν έχουν καταγραφεί στο βιβλίο Guinness. Φαίνεται πως δεν ενθαρρύνεται η προσπάθεια κατάρριψης ρεκόρ διπλώματος χαρτιού για οικολογικούς λόγους!


Πέμπτη 12 Σεπτεμβρίου 2024

Ξενάγηση στο Μουσείο Γρίφων Μεγίστης!

 

Φέτος το "εις το άπειρον" επισκέφτηκε το Μουσείο Γρίφων Μεγίστης, που βρίσκεται στο πανέμορφο και ακριτικό Καστελλόριζο. Πρόκειται για το πρώτο και μοναδικό μουσείο γρίφων στην Ελλάδα και το τέταρτο σε όλο τον κόσμο. Με τον ιδρυτή του, κ. Πανταζή Χούλη, μαθηματικό και γριφολόγο, ζήσαμε μια όμορφη διαδραστική εμπειρία και σας προσφέρουμε μια ξενάγηση στον κόσμο των γρίφων.


Μουσείο Γρίφων Μεγίστης


Μουσείο Γρίφων Μεγίστης
Στην είσοδο μας περιμένει ένας καθρέφτης με οφθαλμαπάτες, προϊόντα 3D εκτύπωσης... 

Μουσείο Γρίφων Μεγίστης


Όταν ο κ. Πανταζής Χούλης επισκεπτόταν την ιδιαίτερη πατρίδα του, το Καστελλόριζο, είχε πάντα στο πίσω μέρος του μυαλού του ότι κάποτε θα επιστρέψει στο νησί του για να ζήσει μόνιμα. Το Καστελλόριζο, λοιπόν, επέλεξε για να ιδρύσει το Μουσείο Γρίφων Μεγίστης το 2020 και έκτοτε να διοργανώνει εργαστήρια, μέσω των οποίων δίνει την ευκαιρία στα παιδιά να λύνουν γρίφους και να κατασκευάζουν τους δικούς τους. Καθηγητής του Πανεπιστημίου της Δυτικής Αυστραλίας έως και το 2012 και γνωστός στην κοινότητα των γρίφων με πολλές τιμητικές διακρίσεις, κατέχει μια εκτενή συλλογή από 4.000 γρίφους, 700 από τους οποίους είναι δικές του επινοήσεις και πρωτότυπα. 


Μουσείο Γρίφων Μεγίστης
Ένα μικρό μέρος της συλλογής... 


Ο κ. Χούλης μας εξηγεί ότι υπάρχουν πολλά είδη γρίφων:


✅Οι ταιριαστικοί γρίφοι, που μοιάζουν με παζλ, όπως είναι το τάνγκραμ και το οστομάχιον του Αρχιμήδη.


Μουσείο Γρίφων Μεγίστης


✅Οι αναδιπλούμενοι γρίφοι, στους οποίους πρέπει να γίνει αναδίπλωση του σχήματος. Τέτοιοι είναι ο "Θρόνος των θεών" και ο "Φατσούλας", που συνδέεται με τη διεδρική ομάδα \(D_4\), με 8 στοιχεία.


Μουσείο Γρίφων Μεγίστης
Ο "Θρόνος των θεών" πριν και μετά την αναδίπλωση 


Μουσείο Γρίφων Μεγίστης
Ο "Φατσούλας" και τα μαθηματικά που κρύβονται πίσω από τον γρίφο 


✅Οι διασυνδεδεμένοι γρίφοι, όπου στόχος είναι να τους ανοίξουμε.


✅Οι λαβύρινθοι. Λέγεται ότι ο λαβύρινθος του Δαίδαλου θεωρείται ως το πρώτο escape room στην ανθρωπότητα.


✅Οι ακολουθιακοί γρίφοι, οι οποίοι θέλουν συγκεκριμένη ακολουθία κινήσεων για να επιλυθούν. Τέτοιοι είναι οι κύβοι Rubik, που σχετίζονται με τη Θεωρία Ομάδων και οι "Πυραμίδες μέσα στη Σφαίρα".


Μουσείο Γρίφων Μεγίστης

Μουσείο Γρίφων Μεγίστης

Μουσείο Γρίφων Μεγίστης

Μουσείο Γρίφων Μεγίστης
Οι συγκεκριμένοι κύβοι Ρούμπικ, επινοημένοι από τον Πανταζή Χούλη, παραμένουν αναλλοίωτοι με τις περιστροφές-μεταθέσεις. 

Μουσείο Γρίφων Μεγίστης
Οι "Πυραμίδες μέσα στη Σφαίρα"


✅Οι ανοιγόμενοι γρίφοι, όπως το "Σπιτάκι του Καστελλόριζου", ή ο γρίφος που χρησιμοποιεί τη φυγόκεντρο για να ανοιχτεί.


Μουσείο Γρίφων Μεγίστης
Το "Σπιτάκι του Καστελλόριζου" 

✅Το ανεξήγητο αντικείμενο, όπως το "Καραβάκι μέσα σε μπουκαλάκι". 


✅Οι εκλιπόμενοι ή εξαφανιζόμενοι γρίφοι, όπως ο γρίφος με το κομμάτι σοκολάτας που λείπει. 


...και τόσοι άλλοι... 


Μουσείο Γρίφων Μεγίστης
Τρισδιάστατο Τέτρις

Μουσείο Γρίφων Μεγίστης
Το "Γριφοπούλι" 

Μουσείο Γρίφων Μεγίστης
Τα "Πανταζάρια", ζάρια σχεδιασμένα έτσι, ώστε να κερδίζεις πάντα τον αντίπαλό σου, με βάση τη Θεωρία Πιθανοτήτων

Μουσείο Γρίφων του Καστελλόριζου
Οι κωνικές τομές 

Η κούπα του Πυθαγόρα
Η "κούπα του Πυθαγόρα". Θεωρείται εφεύρεση του Πυθαγόρα, ο οποίος ήθελε να διδάξει στους μαθητές του την αναγκαιότητα τήρησης του μέτρου στις ζωές τους. Αν γεμίσουμε την κούπα με κρασί (ή κάποιο άλλο υγρό) πάνω από το επιτρεπόμενο όριο, η κούπα θα αδειάσει εντελώς και δεν θα χυθεί μόνο η περιττή ποσοτητα! 
Η λειτουργία της κούπας του Πυθαγόρα βασίζεται στην αρχή των συγκοινωνούντων δοχείων και στην εξίσωση Bernoulli.  


Μουσείο Γρίφων Μεγίστης
Ένας αναγραμματισμός της λέξης "ΚΑΣΤΕΛΛΟΡΙΖΟ" είναι το "ΖΕΣΤΟ ΚΟΡΑΛΛΙ".


🧮Θεσμός έχει γίνει πλέον το Φεστιβάλ Γρίφων, που διοργανώνεται από το Μουσείο Γρίφων. Στις 11-13 Οκτωβρίου 2024 θα διεξαχθεί το 4ο Φεστιβάλ Γρίφων στο Καστελλόριζο, όπου μεταξύ των προσκεκλημένων θα είναι και ο εφευρέτης του πασίγνωστου "Κύβου του Ρούμπικ", Έρνο Ρούμπικ.


🌐Μπορείτε να μαθαίνετε τα νέα του Μουσείου Γρίφων μέσα από τη σελίδα του στο Facebook: Ένωση Ιδεών, Γρίφων, Μαθηματικών (ΕΝ.Ι.Γ.ΜΑ.).