Εμφάνιση αναρτήσεων με ετικέτα γεωμετρία. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα γεωμετρία. Εμφάνιση όλων των αναρτήσεων

Παρασκευή 19 Σεπτεμβρίου 2025

Το ChatGPT προσπάθησε να λύσει μαθηματικό πρόβλημα που είχε καταγράψει ο Πλάτωνας – Αυτά ήταν τα αποτελέσματα

 

Το πρόβλημα του διπλασιασμού του τετραγώνου παρουσιάζεται στον «Μένωνα» του Πλάτωνα γύρω στο 385 π.Χ., ως μέρος της φιλοσοφικής συζήτησης για την προέλευση της γνώσης. Εδώ και πάνω από 2.400 χρόνια, το πρόβλημα αυτό χρησιμοποιείται ως παράδειγμα στη διδασκαλία των μαθηματικών και συνεχίζει να πυροδοτεί φιλοσοφικές συζητήσεις για το αν η γνώση είναι έμφυτη ή αποκτάται με εμπειρία.

 

Το ChatGPT προσπάθησε να λύσει μαθηματικό πρόβλημα που είχε καταγράψει ο Πλάτωνας – Αυτά ήταν τα αποτελέσματα

Στον διάλογο «Μένων», ο Πλάτωνας περιγράφει για το πώς ο Σωκράτης προσκαλεί έναν από τους δούλους που τον συνοδεύουν, ο οποίος γνωρίζει ελληνικά αλλά όχι μαθηματικά, να εξετάσει μαζί του το εξής γεωμετρικό πρόβλημα: Με ποιον τρόπο μπορεί να διπλασιαστεί ένα τετράγωνο; Δηλαδή να βρούμε την πλευρά τετραγώνου το οποίο να έχει διπλάσιο εμβαδόν από το αρχικό. Το αγόρι στην αρχή έκανε λάθος λέγοντας ότι διπλασιάζοντας το μήκος των πλευρών, διπλασιάζεται και το εμβαδόν του. Ωστόσο, μέσω μιας σειράς ερωτήσεων, ο Σωκράτης το καθοδήγησε ώστε να βρει τη σωστή λύση: οι πλευρές του νέου τετραγώνου πρέπει να έχουν ίδιο μήκος με τη διαγώνιο του αρχικού τετραγώνου.


Το πρόβλημα του διπλασιασμού του τετραγώνου


Η αλγεβρική λύση και η... άποψη του ChatGPT

Οι ερευνητές Δρ. Nadav Marco και Καθηγητής Ανδρέας Στυλιανίδης έθεσαν το ίδιο πρόβλημα στο ChatGPT-4. Εξέτασαν την ικανότητα του chatbot να βρίσκει λύσεις, θέτοντας μια σειρά ερωτήσεων στην ίδια λογική με αυτή του Σωκράτη. Το κεντρικό ζητούμενο ήταν κατά πόσο το chatbot θα κατόρθωνε να λύσει το πρόβλημα, είτε αντλώντας πληροφορίες από την τεράστια βάση δεδομένων με την οποία εκπαιδεύεται, είτε αναπτύσσοντας λύσεις. «Όταν ερχόμαστε αντιμέτωποι με ένα νέο πρόβλημα, το ένστικτό μας συχνά είναι να δοκιμάζουμε πράγματα βασισμένα σε προηγούμενη εμπειρία μας. Στο πείραμά μας, το ChatGPT φάνηκε να κάνει κάτι παρόμοιο», δήλωσε ο Δρ. Marco. 

Συγκεκριμένα, οι ερευνητές ζήτησαν από το ChatGPT-4 να βρει την πλευρά του τετραγώνου που θα έχει διπλάσιο εμβαδόν από το τετράγωνο πλευράς 2. Το chatbot, έπειτα από αλγεβρικούς υπολογισμούς, έδωσε την απάντηση \(\sqrt{8}\). Όταν οι ερευνητές προσπάθησαν να το «παγιδεύσουν» να κάνει το ίδιο λάθος με το αγόρι από το «Μένωνα», ρωτώντας το μήπως πρέπει να διπλασιαστεί η πλευρά του αρχικού τετραγώνου, αυτό δεν έκανε λάθος. Εκεί, όμως, που φάνηκε να δυσκολεύεται ήταν η γεωμετρική λύση του προβλήματος. Καθώς ο άρρητος \(\sqrt{8}\) δεν είναι ακριβώς ίσος ούτε με 2,82 ούτε με 2,83, αν σχεδιάζαμε ένα τετράγωνο με πλευρά 2,82 ή 2,83, το νέο τετράγωνο δεν θα είχε ακριβώς το διπλάσιο εμβαδόν, αλλά λίγο μικρότερο ή λίγο μεγαλύτερο από 8. Το ChatGPT όμως επέμενε ότι πρακτικά θα ήταν αποδεκτή μια στρογγυλοποίηση  όπως το 2,8 ή εναλλακτικά πρότεινε τη μέτρηση με χρήση οργάνων ακριβείας! 

 

Η γεωμετρία δεν είναι το δυνατό σημείο των LLM

Το ChatGPT σε γενικές γραμμές δυσκολεύεται να αποδώσει καλά σε γεωμετρικούς συλλογισμούς, δεδομένου ότι πρόκειται για μεγάλο γλωσσικό μοντέλο (LLM) που εκπαιδεύεται σε κείμενα και η πρόσβαση σε γεωμετρικές αναπαραστάσεις χρειάζεται υποβοήθηση. Παρ’ όλα αυτά, οι ερευνητές ανέμεναν ότι θα κατόρθωνε να αναγνωρίσει ένα ευρέως γνωστό πρόβλημα και θα αναπαρήγαγε την κλασική γεωμετρική λύση του Σωκράτη.

«Αν απλώς ανακαλούσε από μνήμης, θα ήταν σχεδόν βέβαιο ότι θα ανέφερε κατευθείαν την κλασική λύση της δημιουργίας του νέου τετραγώνου από τη διαγώνιο του αρχικού», εξηγεί ο Καθηγητής Στυλιανίδης. «Αντιθέτως, φαίνεται ότι η συμπεριφορά του LLM εξαρτάται από τα συμφραζόμενα». 

Παραδόξως, το chatbot αρχικά επέλεξε την αλγεβρική μέθοδο επίλυσης εξίσωσης δευτέρου βαθμού, που ήταν άγνωστη στην εποχή του Πλάτωνα, και δεν προσέφερε αυθόρμητα τη γεωμετρική λύση. Μόνο όταν οι ερευνητές εξέφρασαν την «απογοήτευσή» τους, το chatbot έδωσε την γεωμετρική λύση της διαγωνίου.

Οι ερευνητές στη συνέχεια του έθεσαν δύο νέες προκλήσεις: τον διπλασιασμό του εμβαδού ενός ορθογώνιου παραλληλόγραμμου και ενός τριγώνου, διατηρώντας τις αρχικές αναλογίες. Και στις δύο περιπτώσεις, το ChatGPT επέλεξε ξανά την αλγεβρική λύση, αγνοώντας την προτίμηση των ερευνητών για τη γεωμετρική.

Όταν, δε, ρωτήθηκε για το πρόβλημα του ορθογώνιου, υποστήριξε λανθασμένα ότι η διαγώνιος προσφέρει άμεση γεωμετρική λύση. Οι ερευνητές πιστεύουν ότι το λάθος δεν προερχόταν από τη βάση δεδομένων του, αλλά ότι ήταν μία εικασία βασισμένη στην προηγούμενη συζήτησή τους για τη διαγώνιο του τετραγώνου. Δηλαδή το ChatGPT παρήγαγε ένα λάθος, όχι επειδή «θυμόταν» λάθος, αλλά επειδή κατασκεύασε μια νέα, λανθασμένη λύση (το λεγόμενο genetic error). Ωστόσο, ύστερα από περαιτέρω καθοδήγηση, βρήκε εντέλει τη σωστή γεωμετρική λύση.

Οι ερευνητές συμπέραναν ότι, από την οπτική του χρήστη, η συμπεριφορά του ChatGPT ανακατεύει ανάκληση δεδομένων με συλλογιστική… της στιγμής. Την συνέκριναν με τη «ζώνη επικείμενης ανάπτυξης», την απόσταση δηλαδή ανάμεσα σε αυτά που γνωρίζει ήδη κάποιος και σε αυτά που θα μπορούσε να μάθει με καθοδήγηση.

Όμως αυτοί οι περιορισμοί της ΤΝ, σύμφωνα με την ερευνητική ομάδα, θα μπορούσαν να αποδειχθούν ευκαιρία μάθησης για τους σπουδαστές, τους οποίους συμβουλεύουν να δίνουν στο chatbot εντολές που ενθαρρύνουν τη συνεργατική επίλυση προβλημάτων αντί απλώς να ζητούν την απάντηση. Με αυτόν τον τρόπο, θα εξασκήσουν τη δική τους κριτική σκέψη και συλλογιστική ικανότητα.

Η έρευνα δημοσιεύθηκε στο ακαδημαϊκό περιοδικό International Journal of Mathematical Education in Science and Technology.


Πέμπτη 31 Ιουλίου 2025

Από τον Απολλώνιο στα... αραβικά χειρόγραφα και τελικά στην... Ολλανδία!


Μια εμπεριστατωμένη έρευνα «κόντρα» στις ανακριβείς και παραπλανητικές αντιγραφές του διαδικτύου


Από τον Απολλώνιο στα... αραβικά χειρόγραφα και τελικά στην... Ολλανδία_εις το άπειρον


Κρυμμένοι… θησαυροί

Ο Απολλώνιος ο Περγεύς  (262 π.Χ.–190 π.Χ.) είναι γνωστός για το πρωτοποριακό του έργο στην Γεωμετρία. Υπήρξε ένας από τους μεγαλύτερους μαθηματικούς και γεωμέτρες της αρχαιότητας. Γεννήθηκε στην αρχαία ελληνική πόλη Πέργη της Μικράς Ασίας. Σπούδασε και δίδαξε στην Αλεξάνδρεια και, μεταξύ των άλλων, συνέγραψε το έργο «Κωνικά». Σε αυτό, ανέπτυξε συστηματικά τις έννοιες της έλλειψης, της παραβολής και της υπερβολής (ο κύκλος μελετάται στα Κωνικά ως ειδική περίπτωση της έλλειψης), επηρεάζοντας βαθιά τα μαθηματικά και την αστρονομία τόσο της ελληνιστικής περιόδου όσο και των μεταγενέστερων πολιτισμών.


Ο Απολλώνιος ο Περγεύς
Ο Απολλώνιος ο Περγεύς, γνωστός κυρίως για το έργο του "Κωνικά" που μελετά τις κωνικές τομές. Πηγή εικόνας: Wikipedia



Από τα οκτώ βιβλία που αποτελούσαν τα «Κωνικά», τα πρώτα τέσσερα διασώζονται στα ελληνικά, ενώ τα πέμπτο έως έβδομο είναι γνωστά μόνο από μεσαιωνικές αραβικές μεταφράσεις, που αποδίδονται πιθανώς στον Θαμπίτ Ιμπν Κούρρα και μεταγενέστερους λογίους της ισλαμικής Χρυσής Εποχής. Το όγδοο βιβλίο θεωρείται χαμένο.

Τα αραβικά χειρόγραφα με τα βιβλία 5–7 είχαν αποκτηθεί τον 17ο αιώνα από τον Ολλανδό ανατολιστή και μαθηματικό Jacob Golius, ο οποίος, κατά τη διάρκεια των ταξιδιών του στη Μέση Ανατολή, τα μετέφερε στο Πανεπιστήμιο του Leiden στην Ολλανδία, σε μια τεράστια συλλογή σχεδόν 200 χειρογράφων. Τα χειρόγραφα αυτά είχαν ταξινομηθεί και μελετηθεί από τους επιστήμονες της εποχής και δεν παρέμεναν ξεχασμένα (όπως λανθασμένα αναφέρεται σε πολλά άρθρα στο διαδίκτυο). Η αξία τους όμως αναδεικνύεται ξανά μέσα από σύγχρονες μελέτες, οι οποίες προβάλλουν όχι μόνο το έργο του Απολλώνιου, αλλά και τον ρόλο του ισλαμικού πολιτισμού στη διάσωση και μετάδοση της αρχαίας ελληνικής γνώσης.

Η πρόσφατη επανεξέταση των αραβικών χειρογράφων συνοδεύεται από μελέτη της καλλιγραφίας και των γεωμετρικών διαγραμμάτων που περιέχουν, προσφέροντας μια μοναδική εικόνα για τη μαθηματική παράδοση της ισλαμικής περιόδου. Ο Ολλανδός μαθηματικός και ιστορικός της επιστήμης Jan Pieter Hogendijk τόνισε τη σημασία αυτών των τεκμηρίων ως απόδειξη της πνευματικής ακμής και επιστημονικής πειθαρχίας των μουσουλμάνων λογίων του Μεσαίωνα.


Τμήμα από την αραβική μετάφραση των "Κωνικών" του Απολλώνιου. Πηγή εικόνας και πνευματικά δικαιώματα: Leiden University Libraries


Η επιρροή της επιστημονικής παράδοσης του Ισλάμ και η σημασία της σήμερα

Η επιστημονική γνώση της αρχαιότητας, και ιδιαίτερα των Ελλήνων, δεν χάθηκε, αλλά διασώθηκε και μεταδόθηκε μέσω της ισλαμικής επιστημονικής παράδοσης από τον 8ο έως τον 13ο αιώνα. Πλήθος ελληνικών έργων μεταφράστηκαν στα αραβικά, επεκτάθηκαν και εν τέλει διοχετεύτηκαν στην Ευρώπη, συμβάλλοντας καθοριστικά στην ευρωπαϊκή Αναγέννηση.

Σε αυτό το πλαίσιο, ο καθηγητής Mostafa Zahri του Πανεπιστημίου Sharjah υπογράμμισε τη σημασία της συντήρησης και μελέτης των αραβικών χειρογράφων, τα οποία συχνά παραμένουν αναξιοποίητα σε βιβλιοθήκες της Δύσης. Τον Ιανουάριο του 2025, στο Πανεπιστήμιο Sharjah διοργανώθηκε υπό την αιγίδα του SIFHAMS (Sharjah International Foundation for the History of Arab and Muslim Sciences), διεπιστημονικό εργαστήριο (workshop), όπου συνεργάστηκαν ερευνητές από τον αραβικό και δυτικό κόσμο, με σκοπό την εμβάθυνση στη μελέτη αυτών των πηγών.


Λεπτομέρεια από την αραβική μετάφραση των "Κωνικών" του Απολλώνιου, όπου διακρίνονται οι κωνικές τομές. Leiden University Libraries
Λεπτομέρεια από την αραβική μετάφραση των "Κωνικών" του Απολλώνιου, όπου διακρίνονται οι κωνικές τομές. Πηγή εικόνας και πνευματικά δικαιώματα: Leiden University Libraries 



Στο πλαίσιο της εκδήλωσης μελετήθηκε και το αριθμητικό σύστημα Abjad, στο οποίο τα γράμματα του αραβικού αλφαβήτου αντιστοιχούν σε αριθμούς (π.χ. alif = 1, baa = 2,…) και εμφανίζεται αλφαβητική-αλγεβρική χρήση αριθμών. Αν και δεν φέρεται να χρησιμοποιήθηκε ως κύριο αριθμητικό σύστημα σε επιστημονικά όργανα όπως ο αστρολάβος, όπως λανθασμένα διαβάζουμε σε αρκετά άρθρα, το Abjad παρουσιάζει ενδιαφέρον για την κατανόηση της συμβολικής και μαθηματικής σκέψης της εποχής.

Εκτός από τα βιβλία 5-7 των «Κωνικών» του Απολλώνιου, στο παραπάνω εργαστήριο επαναξιολογήθηκαν και άλλες γνώσεις των Αρχαίων Ελλήνων που διασώθηκαν χάρη στις αραβικές μεταφράσεις, όπως το «Περί Ύλης Ιατρικής» του Διοσκουρίδη, τρόποι κατασκευής ενός αστρολάβου σε χειρόγραφο του Al-Biruni, καθώς και χάρτες της εποχής εκείνης και δόθηκε ώθηση στην ανάδειξη αυτών των τεκμηρίων. Μάλιστα, από την Amsterdam University Press εκδόθηκε το Σεπτέμβριο του 2024 το βιβλίο Prophets, Poets and Scholars:  The Collections of the Middle Eastern Library of Leiden University, το οποίο καλύπτει την ιστορία, τη συλλογή και την εικονογράφηση των αραβικών χειρογράφων — ανάμεσά τους και όσα περιέχουν μέρος του έργου του Απολλώνιου.

Παρά την τεράστια σημασία τους, πολλά χειρόγραφα παραμένουν ανεξερεύνητα. Η συνεχιζόμενη προσπάθεια ψηφιοποίησης και η διαπολιτισμική συνεργασία, όπως αυτή στο Πανεπιστήμιο Sharjah, αποτελούν πολύτιμα εργαλεία για τη μελέτη της ιστορίας της επιστήμης και για την ανάδειξη της παγκόσμιας συνεισφοράς του ισλαμικού και αρχαιοελληνικού πνεύματος στην εξέλιξη των μαθηματικών και των φυσικών επιστημών.

 

Πηγές:

Amsterdam University Press|“Prophets, Poets and Scholars:  The Collections of the Middle Eastern Library of Leiden University”

EurekAlert.org

Ksnt.com

Leiden University Libraries

Wikipedia.org|Απολλώνιος ο Περγεύς


Δευτέρα 3 Μαρτίου 2025

Ο χαρταετός!

 

Γράφει ο Αθ. Δ. Γκίκας, Μαθηματικός


Δημήτρης Μυταράς (1934-2017) - "Χαρταετοί"
Δημήτρης Μυταράς (1934-2017) - "Χαρταετοί"

 

Κάποιες ατέλειωτες νύχτες φέρνω πίσω από τα πέλαγα του χρόνου τα βιώματά μου τα παλιά και ακούραστα. Τα βιώματά μου είναι η μαγιά για το κείμενο που ακολουθεί. Λες πάντα καλύτερα την ιστορία που έχεις κατακτήσει. Αν δεν έχεις τα βιώματα δεν έχεις τίποτα. Τα αληθινότερα κείμενα είναι εκείνα που έχουν αφετηρία τον εαυτό μας. Θα επιχειρήσω να εξισορροπήσω την αλήθεια με την αναγνωσιμότητα.
Έθιμο της Καθαράς Δευτέρας είναι το πέταγμα του χαρταετού. Η οικογένεια αφού επιβιβαστεί στο αυτοκίνητό της, πάρει και τα απαραίτητα φαγώσιμα, θα σταματήσει στο κοντινό περίπτερο ν’ αγοράσει το χαρταετό, έτσι για να διατηρηθεί το έθιμο. 
Ποιο χαρταετό θα μου πείτε; Αυτόν με τις φιγούρες από σύγχρονα κόμικς στην επιφάνειά του ή με σήμα κάποιας ποδοσφαιρικής ομάδας. Και αφού πάνε στην εξοχή θ’ αρχίσει η διαδικασία το πετάγματος πλην ματαίως, τις περισσότερες φορές.


Η σκηνή σαν και τούτη:


-  Ο μικρός θα γκρινιάζει γιατί ο δικός του δεν «σηκώθηκε».
- Ο πατέρας μπλεγμένος μες στους σπάγγους και το ξερόχορτο θα ρίχνει τις ευθύνες στη μητέρα γιατί δεν του έκανε καλό «κεφάλι».
-     Όταν ξεμπλέξει με το λιγοστό σπάγγο που θα του έχει απομείνει θα τρέχει σαν τρελλός στα χωράφια για να πάρει λίγο ύψος ο αετός. Ύστερα περήφανος θα εξομολογείται:  Τον «σήκωσα» και φέτος !


Σπύρος Βασιλείου (1903-1985) - "Τα σαρακοστιανά" (1950)

Η ημέρα θα κυλίσει με άριστες επιδόσεις στην κατανάλωση λαγάνας, ταραμοσαλάτας, καλαμαριών καβουριών και άλλων «σαρακοστιανών» και περιχαρείς θα επιστρέψουν στο σπίτι. Περιχαρείς; Όλο και κάποιοι θα νοιώθουν εκείνο το κενό μέσα τους, το ονομαζόμενο «μεθεόρτιο σύνδρομο» από τους ψυχολόγους, που προέρχεται από τις πολλές ελπίδες που είχαν στηρίξει στην Καθαροδευτεριάτικη έξοδο και δεν επαληθεύτηκαν.
Και πώς να μην γίνει έτσι. Πόσο κοπίασαν για τον αετό; Τί ξέρουν για το σκελετό του με τα «ψυχοκάλαμα» ; Πόσο κοπίασαν για τα ζύγια του; Ας είναι καλά οι πήχες από το ξυλουργείο κι η βιοτεχνία που φτιάχνει αετούς χωρίς «ψυχή»; Πώς ν’ ασχοληθείς με το πέταγμα, αφού δεν καταπιάστηκες ποτέ με την κατασκευή του και μέσα από αυτή, διδάσκοντας την στα παιδιά σου, να δίνεις και να παίρνεις και συ χαρά; Χωρίς περιστροφές θα πω ότι τα πράγματα στις ημέρες μου ήταν καλύτερα. Τούτο όχι από συνήθεια που έχουμε οι παλιότεροι να ωραιοποιούμε καταστάσεις που ζήσαμε… και τότε δεν ήταν όλα ωραία. Άλλα πράγματα ήταν χειρότερα από σήμερα.
Όμως επειδή ο λόγος πρέπει να είναι «ορθός αποδεικτικός», όπως στα ΜΑΘΗΜΑΤΙΚΑ, θα επιχειρήσω τη σύγκριση κι ας βγάλει ο αναγνώστης τα συμπεράσματά του.


Πρώτα πρώτα για μας το πέταγμα του αετού δεν ήταν σαν το «στιγμιαίο αδίκημα» δηλ. αγοράζω την Κ. Δευτέρα το πρωί, κάνω προσπάθεια για πέταγμα και τελείωσα. Ήταν ολόκληρη ιεροτελεστία που άρχιζε μια δυο εβδομάδες πριν. Όταν είσαι νέος έχεις το χρόνο στο πλευρό σου ανεξάντλητο κα όλα είναι συναρπαστικά.

- Πρώτα τα καλάμια για το σκελετό. Ας ήταν καλά τα μαντριά προβάτων. Και σήμερα αν θέλει κάποιος μπορεί να βρει δίπλα σε  αυλάκια.
- Μετά τη φροντίδα για τις κόλλες, το ζυμάρι που θα τις κολλούσε.
- Ο σπάγγος ο κερωμένος για να κρατάει καλύτερα.
- Κουρέλια ή φύλλα από το κιντρινόχρωμο πρόχειρο σχολικό τετράδιο, για την ουρά. Βλέπεις δεν έφτανε η «δραχμή» ν’ αγοράσεις και δεύτερη κόλλα για τις φούντες της ουράς.


Τα δύσκολα άρχιζαν στην συναρμολόγηση. Πώς θα κατορθώσεις να φτιάξεις το κανονικό εξάγωνο. Το μυστικό πήγαινε από τα μεγαλύτερα παιδιά της παρέας στα μικρότερα έτσι εμπειρικά. Εγώ το διδάχτηκα από τον ξαδελφό μου Κ. Γκίκα γεωπόνο, που με τα μακριά και επιδέξια δάκτυλά του έκανε τους καλύτερους χαρταετούς. Θαύμαζα τους αετούς του. Σήμερα δε θαυμάζουμε αλλά θαμπωνόμαστε από ένα συμβάν επιτυχίας. Παλαιά υπήρχαν πρότυπα σε γειτονιές, στο σχολείο, στα αθλήματα, σε εργασιακούς χώρους, όπου μια δεξιότητα μας κέντριζε σε άμιλλα. Θαυμασμός εσωτερικός . ήταν αναμέτρηση με τους εαυτούς μας. Γιατί ο Κώστας φτιάχνει αετό και να μη μπορώ και γω! Έτσι όχι μόνο μαθαίναμε, αλλά συγχρόνως γινόμασταν καράβι που μετέφερε τη γνώση στο επόμενο λιμάνι της αρχέγονης αλυσίδας ζωής. Αν το φορτίο το παραδώσαμε σωστά, τότε η ζωή μας έχει νόημα.


Στην παρουσίαση της κατασκευής θα ακολουθήσω την αρχή της εποπτικότητας, με σκοπό διδακτικό, αισθητικό και κύρια τεκμηριωτικό. Αφού και τα τρία καλάμια ΑΔ, ΓΖ, ΒΕ κεντραριζόντουσαν στο μέσο Ο με καρφίτσα αρχικά για να μπορεί να περιστρέφονται, με την αρχή του σπάγγου στο σημείο Α μετρούσαμε μέχρι το Ο και δέναμε στο Β. Πάλι από το Β μετρούσαμε μέχρι το Ο και δέναμε στο Γ κ.λ.π. Έτσι το εξάγωνο ήταν έτοιμο. Έπρεπε να γίνω Μαθηματικός για να δώσω τη θεωρητική εξήγηση στην κατασκευή του κανονικού εξαγώνου μ’ αυτόν τον τρόπο που περιέγραψα.

 

 

Σχήμα του Αθ.Δ. Γκίκα με τα μαθηματικά του χαρταετού
Σχήμα του Αθ.Δ. Γκίκα με τα μαθηματικά του χαρταετού

 

Η εμπειρική κατασκευή στηρίζεται στην Μαθηματική αλήθεια ότι:
Η πλευρά του κανονικού εξαγώνου ΑΒ = ΑΟ = R = ακτίνα περιγεγραμμένου κύκλου.

Από την κατασκευή του αετού ξεκινούσα στη Β΄ Λυκείου την διδασκαλία του κανονικού εξαγώνου, έτσι όπως απαιτεί η διδακτική των Μαθηματικών από την εμπειρία στο θεωρητικό μοντέλο και αντίστροφα.

 

από την εμπειρία στο θεωρητικό μοντέλο και αντίστροφα


Στα πρώτα χρόνια υπήρχαν μαθητές, που βοηθούσαν στο πέρασμα από την εμπειρία στη θεωρία. Σιγά σιγά, όλο και λιγόστευαν, αφού κανένας γονιός δεν δίδαξε το παιδί του πώς να φτιάχνει αετό. Αν το είχε κάμει θα του είχε μάθει χωρίς καλά καλά να το καταλαβαίνει ο ίδιος και τις ιδιότητες του κανονικού εξαγώνου – θα φανεί παρακάτω του λόγου το ασφαλές. Ας έλθουμε στα ζύγια που πετάγματος ΚΑ, ΚΒ, ΚΟ και της ουράς ΛΕ, ΛΔ.

Σχεδόν πάντοτε όλα είχαν το ίδιο μήκος με την πλευρά (ακτίνα). Όμως, αν ήθελε κάποιος να παίρνει ύψος ο αετός του, κρατούσε το μεσιανό, το ΚΟ μικρότερο, όχι όσο αυτός ήθελε. Τα Μαθηματικά έχουν και πάλι το λόγο, όσο δηλ. το απόστημα ΟΘ του κανονικού εξαγώνου. Εφαρμόζοντας το Πυθαγόρειο Θεώρημα στο τρίγωνο ΟΓΘ θα βρείτε:

 \(ΟΘ=\frac{R \sqrt{3}}{2} \simeq 0,86R\)

 

Και επειδή η πλευρά του κανονικού εξαγώνου είναι όσο και η ακτίνα, το μεσαίο ζύγι είναι τα 0,86 πλευράς. Κατ’ αυτό τον τρόπο, ο αετός υψωνόταν σχεδόν κατακόρυφα, ο σπάγγος του δεν έκανε «κοιλιά», που δεν ήταν τίποτα άλλο από την αλυσοειδή καμπύλη της Θεωρητικής Μηχανικής.


Περιέγραψα την κατασκευή για να είναι η σύγκριση ευχερής. Εμάς μας γέμιζε πριν απ’ όλα η προετοιμασία. Το πέταγμα ήταν η κορύφωση. Νοιώθαμε έρωτα γι’ αυτόν. Τον μαθαίναμε και τον χορταίναμε κατασκευάζοντάς τον. Και όταν τον βλέπαμε να σηκώνεται στα ύψη νοιώθαμε περισσότερο ελεύθεροι. Νικούσαμε την βαρύτητα της Γής που μας κρατά καθηλωμένους χιλιάδες χρόνια πάνω της. Λίκνο του ανθρώπινου γένους και του πολιτισμού του η γη, αλλά και τα δεσμά του. Σαν τον υψώναμε ψηλά και η καλούμπα είχε φτάσει στο τέλος, του στέλναμε και ένα «μήνυμα» του αετού ! Τι ήταν το μήνυμα; Ένα στρογγυλό χαρτί με μια τρύπα στη μέση, συνήθως από το πακέτο τσιγάρων των θεριακλήδων της παρέας, που το περνούσαμε στο σπάγγο και ο αέρας το προχωρούσε μέχρι τον αετό! Έτσι με το πέταγμα το αετού περνούσαμε τις ελεύθερες ώρες σχεδόν όλο το σαρανταήμερο. Όσο κρατούσε το ανοιξιάτικο βοριαδάκι και μας το επέτρεπε. Μετά τον κρεμούσαμε στο υπόγειο, εφόσον δεν είχε καρφωθεί σε κανένα δένδρο. Σύρματα της Δ.Ε.Η. δεν υπήρχαν για εμπόδια και ηλεκτροπληξίες. Έφτιαξα αετούς για τα παιδιά μου, τα ανίψια μου και τον εγγονό μου.
Θα πει κάποιος: Αφού δίδαξες τα παιδιά σου, συ κατασκευάζεις και για το εγγόνι;
-  Ε! λοιπόν, ναι. Τα παιδιά δεν τα είδα αποφασισμένα να γονατίσουν στο πάτωμα και ν’ ανακατευτούν με κόλλες, ψαλίδια και σπάγγους. Τα είδα να κατευθύνονται στο γειτονικό περίπτερο!! Εγώ πάντως κάτι κερδίζω. Γίνομαι πάλι παιδί. Μόνο δυο φορές στη ζωή μας γινόμαστε παιδιά. Όταν είμαστε πραγματικά παιδιά και όντας μεγάλοι, να μπορούμε να κατακτήσουμε πάλι όσα μας έκαναν εντύπωση ως παιδιά. Η παιδική μνήμη είναι παντοδύναμη. Παραμένουμε ζωντανοί χάρη στην αυταξία ορισμένων στιγμών, που επιλέγουμε, δημιουργώντας μια δεύτερη ροή παράλληλη με τις ρυτίδες μας. 

 

Πηγή: Λαμιακός Τύπος


Αλέκος Φασιανός (1935-2022) - "Χαρταετός"

 

🌐Ένα αναλυτικό tutorial για την κατασκευή χαρταετού, καθώς και τη Φυσική που χρησιμεύει για το πέταγμα του χαρταετού, θα βρείτε στο ιστολόγιο Πειράματα Φυσικής με Απλά Υλικά.

 

Δευτέρα 17 Φεβρουαρίου 2025

Τα Μαθηματικά στην Τέχνη: Η ταινία του Möbius

 

Αν είχαμε μια κενή σφαίρα με ένα μυρμήγκι στο εσωτερικό της, εύκολα θα αντιλαμβανόμασταν ότι η σφαίρα διαθέτει δύο διακεκριμένες όψεις. Ένα μυρμήγκι που περπατά στο εσωτερικό της σφαίρας δεν θα φτάσει ποτέ στην εξωτερική επιφάνεια. Επίσης, ένα μυρμήγκι που περπατά στο εξωτερικό της δεν πρόκειται να περάσει στο εσωτερικό.

Μια επίπεδη επιφάνεια που εκτείνεται ως το άπειρο προς όλες τις κατευθύνσεις διαθέτει, επίσης, δύο όψεις. Ένα μυρμήγκι που περπατά στη μία όψη δεν πρόκειται να βρεθεί ποτέ στην άλλη. Ακόμη και μια πεπερασμένη επίπεδη επιφάνεια, όπως μια σελίδα χαρτιού, θεωρείται δύο όψεων αν το μυρμήγκι δεν καταφέρει να "καβαλήσει" τις αιχμηρές ακμές του συνόρου της. Ομοίως, ένα κοίλο αντικείμενο τοροειδούς σχήματος σαν τον λουκουμά έχει δύο όψεις. 

Η πρώτη επιφάνεια μίας όψης που ανακαλύφθηκε και μελετήθηκε είναι η ταινία του Möbius.


Seth Bareiss (γεν. 1964) - "Forever Fish" (2005)


Τα βιβλία γράφουν... 

Η ταινία του Möbius είναι μια επιφάνεια με μία μόνο όψη και μόνο ένα σύνορο (συνοριακή γραμμή), ενώ δεν έχει προσανατολισμό.

M.C Escher (1898-1972) - "Möbius Strip I" (1961)
M.C Escher (1898-1972) - "Möbius Strip I" (1961)

M.C Escher (1898-1972) - "Möbius Strip II - Red Ants" (1963)


Για να κατασκευάσει κανείς μια ταινία Möbius, αρκεί απλώς να ενώσει τα δύο άκρα μιας μακριάς ανοιχτής λωρίδας, αφού πρώτα περιστρέψει το ένα από αυτά κατά 180º ως προς το άλλο. Σε μια τέτοια επιφάνεια, ένα μυρμήγκι μπορεί να περπατήσει από ένα σημείο σε ένα άλλο, χωρίς ποτέ να διασχίσει μια ακμή.


M.C Escher (1898-1972) - "Möbius Horsemen" (1946)

Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Möbius"
Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Möbius"

Joachim Eriksen (σύγχρονος καλλιτέχνης)
Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Intermediate Dimension"


Προσπαθήστε να χρωματίσετε μια ταινία Möbius. Είναι αδύνατο να βάψετε τη μια πλευρά κόκκινη και την άλλη πράσινη, καθώς διαθέτει μια μόνο όψη. Αυτό σημαίνει ότι αν πάρουμε δύο οποιαδήποτε σημεία πάνω στην ταινία του Möbius, μπορούμε να σχεδιάσουμε μια συνεχή γραμμή, χωρίς ποτέ να διασχίσουμε ένα σύνορο (ακμή).  

Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Möbius"
Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Über die Einfachheit der Dinge"


Η ταινία του Μέμπιους είναι μια μη προσανατολιζόμενη επιφάνεια. Παρατηρήστε ότι ο κάβουρας που κινείται πάνω σε αυτήν αντιστρέφεται (η μεγάλη του δαγκάνα από αριστερά πάει δεξιά) κάθε φορά που κάνει έναν πλήρη κύκλο. Αυτό δεν θα συνέβαινε αν ο κάβουρας κινούταν πάνω σε έναν τόρο.
Η ταινία του Μέμπιους είναι μια μη προσανατολιζόμενη επιφάνεια. Παρατηρήστε ότι ο κάβουρας που κινείται πάνω σε αυτήν αντιστρέφεται (η μεγάλη του δαγκάνα από αριστερά πάει δεξιά) κάθε φορά που κάνει έναν πλήρη κύκλο. Αυτό δεν θα συνέβαινε αν ο κάβουρας κινούταν πάνω σε έναν τόρο.


Η ταινία του Möbius με τις ενδιαφέρουσες ιδιότητές της έχει αποτελέσει -και συνεχίζει να αποτελεί- έμπνευση για πολλούς καλλιτέχνες...


"Möbius" - Γλυπτό των Jennifer Macklem & Kip Jones  που διακοσμεί το εξωτερικό της δημόσιας βιβλιοθήκης της Κελόουνα στον Καναδά.
"Möbius" - Γλυπτό των Jennifer Macklem & Kip Jones 
που διακοσμεί το εξωτερικό της δημόσιας βιβλιοθήκης της Κελόουνα στον Καναδά.


"Möbius Ship" (2006) - Γλυπτό του Tim Hawkinson που παριστάνει τον αέναο κύκλο της ταινίας του Möbius. (Μουσείο Τέχνης της Ινδιανάπολης)
"Möbius Ship" (2006) - Γλυπτό του Tim Hawkinson
που παριστάνει τον αέναο κύκλο της ταινίας του Möbius.
(Μουσείο Τέχνης της Ινδιανάπολης)


Joachim Eriksen (σύγχρονος καλλιτέχνης)
Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Simplicity (Möbius band)", γλυπτό από αλάβαστρο



Η ανακάλυψή της αποδίδεται στους Γερμανούς μαθηματικούς August Ferdinand Möbius και Johann Benedict Listing το 19ο αιώνα, αν και μια δομή παρόμοια με την ταινία του Möbius φαίνεται στα ρωμαϊκά μωσαϊκά που χρονολογούνται γύρω στο 200-250 μ.Χ.  


Αρχαίο Ρωμαϊκό μωσαϊκό που απεικονίζει μια δομή παρόμοια με την ταινία του Μέμπιους
Αρχαίο ρωμαϊκό μωσαϊκό, όπου απεικονίζεται μια δομή παρόμοια με την ταινία του Möbius  


Πηγές:

Τετάρτη 1 Ιανουαρίου 2025

Καλώς ήρθες, 2025...


Η αντίστροφη μέτρηση έγινε! Σας ευχαριστώ όλους όσοι ασχοληθήκατε με τον αριθμογρίφο του 2025 και σας στέλνω 2025 ευχές για μια όμορφη και δημιουργική χρονιά!!! 


2025



Τι λέτε να δούμε κάτι ακόμα; 


Ισότητες μόνο με τα ψηφία 2, 0, 2, 5:

\(20+25 = ((2+0!)^2) \cdot 5 = 2 \cdot 20 +5 = \sqrt{2025}\)

\((20+25)·(20+25)=2025\)


Το 2025 γράφεται ως άθροισμα των κύβων των αριθμών 1, 2, 3, ... , 9:

\(1^3+2^3+3^3+4^3+5^3+6^3+7^3+8^3+9^3=2025\)


...αλλά και ως το τετράγωνο του αθροίσματος των αριθμών αυτών:

\((1+2+3+4+5+6+7+8+9)^2=2025\) 


Εσείς ποιες άλλες ιδιότητες ξέρετε; Γράψτε μας στα σχόλια όσες γνωρίζετε ή ανακαλύψτε παρακάτω άλλες 2025 ιδιότητες!

 Numbers aplenty 2025

Numbers magic: Mathematics of 25 and 2025 in numbers and magic squares Part 1 - Part 2


Πέμπτη 21 Νοεμβρίου 2024

Ο Μάγος του Οζ, το Σκιάχτρο και ένα μαθηματικό λάθος


🎬Στην ταινία του 1939, "Ο Μάγος του Οζ", ένα συμπαθέστατο σκιάχτρο πηγαίνει να συναντήσει τον πανίσχυρο μάγο του Οζ για να του ζητήσει να του δώσει εγκέφαλο. Μετά από ένα μακρινό και επικίνδυνο ταξίδι, ο μάγος, ο οποίος -μεταξύ μας- δεν ήταν αληθινός μάγος, αλλά βάσιζε τη δράση του στο φαινόμενο placebo, απονέμει στο Σκιάχτρο τον τιμητικό τίτλο Δ.Σ., δηλαδή Δόκτωρ της κριτικής Σκέψης. Μόλις πήρε το δίπλωμά του, το Σκιάχτρο, με ανανεωμένη εμπιστοσύνη στις ικανότητές του, εντυπωσίασε τους φίλους του διατυπώνοντας το εξής... "θεώρημα":


"Το άθροισμα των τετραγωνικών ριζών οποιωνδήποτε δύο πλευρών ισοσκελούς τριγώνου ισούται με την τετραγωνική ρίζα της τρίτης πλευράς".




❓Θα μπορούσε, άραγε, να ισχύει ποτέ αυτό; Ας το δούμε αναλυτικά.

Επειδή ένα ισοσκελές τρίγωνο έχει δύο ίσες πλευρές, αυτό που είπε το Σκιάχτρο θα μπορούσε να περιγραφεί με τη μαθηματική σχέση
\(\sqrt{\alpha}+\sqrt{\alpha}=\sqrt{\gamma}\)
ή
\(2\sqrt{\alpha}=\sqrt{\gamma}\)
ή
\(\gamma=4\alpha\).

Όμως, με βάση την τριγωνική ανισότητα, είναι αδύνατο να υπάρχει τρίγωνο με μήκη πλευρών \\(\alpha, \alpha\\) και \\(4\alpha\\). Ελέγξτε το μόνοι σας, προσπαθώντας να σχεδιάσετε ένα τέτοιο τρίγωνο.

Από την άλλη, μπορεί το Σκιάχτρο να εννοούσε
\(\sqrt{\alpha}+\sqrt{\gamma}=\sqrt{\gamma}\),
το οποίο συνεπάγεται ότι \(\alpha=0\),
που δεν μπορεί να ισχύει για πλευρά τριγώνου.


🌐Προφανώς, ο συγγραφέας του κινηματογραφικού σεναρίου ηθελημένα έβαλε το Σκιάχτρο να διατυπώνει μια εντυπωσιακή σχέση που από μαθηματικής άποψης δεν ισχύει. Πάντως, σύμφωνα με τον Clifford A. Pickover, συγγραφέα του βιβλίου γρίφων "Τα Μαθηματικά του Οζ", η μαθηματική σχέση του Σκιάχτρου θα μπορούσε να είναι σωστή σε κάποιο είδος καμπυλωμένου χώρου, όπου η ευθεία γραμμή δεν είναι ο συντομότερος "δρόμος" ανάμεσα σε δύο σημεία και πιθανόν στη Χώρα του Οζ να ισχύει κάποια παράξενη, μη Ευκλείδεια γεωμετρία...