Εμφάνιση αναρτήσεων με ετικέτα γεωμετρία. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα γεωμετρία. Εμφάνιση όλων των αναρτήσεων

Δευτέρα 26 Ιανουαρίου 2026

Η "Επιπεδοχώρα" στον κινηματογράφο

Από το πειραματικό animation των 60’s στο εκπαιδευτικό animation του 21ου αιώνα

 

Η «Επιπεδοχώρα (Flatland: A Romance of Many Dimensions, 1884)» του Edwin A. Abbott είναι ένα από τα ελάχιστα λογοτεχνικά έργα που κατάφεραν να γεφυρώσουν με τόση επιτυχία τα μαθηματικά, τη φιλοσοφία και την κοινωνική σάτιρα. Δεν είναι τυχαίο ότι, παρά τη δυσκολία του θέματος, το έργο ενέπνευσε και τον κινηματογράφο...

Στη συνέχεια παρουσιάζονται τρεις βασικές animated κινηματογραφικές μεταφορές της «Επιπεδοχώρας», που καλύπτουν σχεδόν μισό αιώνα.


Flatland: The Movie (2007). Helios intimidates her Ministry employee, Arthur Square
Σκηνή από την ταινία animation Flatland: The Movie (2007)


 

1. Flatland (1965) – Ταινία μικρού μήκους

Πρόκειται για μια πειραματική ταινία κινουμένων σχεδίων μικρού μήκους (περίπου 10–11 λεπτά. Η ταινία αποδίδεται σε δημιουργούς του χώρου του εκπαιδευτικού και καλλιτεχνικού animation της εποχής (John Hubley, Eric Martin) και εντάσσεται στο πνεύμα των οπτικοακουστικών πειραματισμών των ’60s.

Η αφήγηση είναι λιτή και αφαιρετική, με έμφαση:

  • στη δισδιάστατη φύση της Επιπεδοχώρας,
  • στη δυσκολία των κατοίκων να συλλάβουν την έννοια της τρίτης διάστασης,
  • και λιγότερο στην κοινωνική σάτιρα του πρωτότυπου έργου.

Αποτελεί περισσότερο ένα οπτικό φιλοσοφικό σχόλιο παρά μια πλήρη αφήγηση της ιστορίας.

 




2. Flatland: The Movie (2007)

Η ταινία του 2007 είναι η πιο ολοκληρωμένη κινηματογραφική μεταφορά της «Επιπεδοχώρας». Πρόκειται για μεγάλου μήκους animation, σκηνοθετημένο από τον Ladd Ehlinger Jr., με στόχο κυρίως την εκπαιδευτική χρήση.

Η ταινία:

  • ακολουθεί πιο πιστά την πλοκή του βιβλίου,
  • παρουσιάζει καθαρά την κοινωνική ιεραρχία των σχημάτων,
  • δίνει έμφαση στη σύγκρουση ανάμεσα στην εμπειρική γνώση και τη νέα, «αδιανόητη» ιδέα της τρίτης διάστασης.

 




3. Flatland 2: Sphereland (2012)

Η ταινία Flatland 2: Sphereland (2012), επίσης σε σκηνοθεσία του Ladd Ehlinger Jr., βασίζεται στο «Sphereland: A Fantasy About Curved Spaces and an Expanding Universe, (1957)» τη συνέχεια του έργου του Abbott.

Σε αυτήν την εκδοχή:

  • η κοινωνική αλληγορία υποχωρεί,
  • το βάρος μετατοπίζεται στις ανώτερες διαστάσεις,
  • και αναδεικνύεται η δυσκολία κατανόησης αφηρημένων μαθηματικών εννοιών, ακόμη και από εκείνους που έχουν ήδη βιώσει μια «αποκάλυψη».

Η ταινία λειτουργεί περισσότερο ως φιλοσοφικό και μαθηματικό συμπλήρωμα της πρώτης.




 

Διδακτική αξιοποίηση των ταινιών

Οι κινηματογραφικές μεταφορές της «Επιπεδοχώρας» μπορούν, πέρα από ψυχαγωγικούς σκοπούς, να ιδωθούν και ως διδακτικά εργαλεία, που επιτρέπουν στους μαθητές να προσεγγίσουν τα μαθηματικά ως τρόπο σκέψης και όχι μόνο ως σύνολο τύπων. Εκπαιδευτικοί και γονείς μπορούν να τις αξιοποιήσουν με πολλούς τρόπους, ανάλογα με την κρίση τους και, φυσικά, τις ηλικίες των παιδιών:

Εισαγωγή στην έννοια των διαστάσεων

Μαθηματικά και κοινωνία

Γεωμετρία και Bauhaus

Μαθηματικά και Σύγχρονη Τέχνη

 

Γνωρίζετε άλλες ταινίες βασισμένες στην «Επιπεδοχώρα»; Εσείς πώς θα αξιοποιούσατε κάποια από αυτές τις ταινίες (ή το μυθιστόρημα) στη διδασκαλία σας/στη δημιουργική απασχόληση των παιδιών;

 

Κυριακή 11 Ιανουαρίου 2026

Μαθηματικός έλυσε το «πρόβλημα της μετακίνησης του καναπέ» από τα «Φιλαράκια»

 

Από την κλασική σκηνή της μετακίνησης του καναπέ στα «Φιλαράκια», με τον Ρος να φωνάζει «Pivot!»
Από την κλασική σκηνή της μετακίνησης του καναπέ στη σειρά "Φιλαράκια", με τον Ρος να φωνάζει "Pivot!"
(Warner Bros. Television)


Το «πρόβλημα της μετακίνησης του καναπέ» (Moving Sofa Problem) είναι ένα κλασικό ανοιχτό πρόβλημα της γεωμετρίας, που διατυπώθηκε το 1966 από τον Leo Moser.

Η διατύπωση του προβλήματος:

Φανταζόμαστε έναν καναπέ (ένα επίπεδο σχήμα στο επίπεδο) που πρέπει να μετακινηθεί:

  • μέσα από έναν διάδρομο σχήματος Γ με σταθερό πλάτος 1,
  • χωρίς να ανασηκωθεί, να παραμορφωθεί ή να περάσει μέσα από τους τοίχους (επιτρέπεται μόνο μεταφορά και περιστροφή στο επίπεδο).

 

moving sofa problem

Το ερώτημα είναι:

Ποιο είναι το μέγιστο δυνατό εμβαδόν ενός καναπέ που μπορεί να μετακινηθεί επιτυχώς μέσα από έναν τέτοιο διάδρομο;


Εκτός από τη μαθηματική κοινότητα, το πρόβλημα αυτό έχει βρει θέση και στην ποπ κουλτούρα, χάρη στην γνωστή σκηνή από την κωμική σειρά «Τα φιλαράκια», όπου ο Ρος, η Ρέιτσελ και ο Τσάντλερ πασχίζουν να μεταφέρουν έναν καναπέ από τις σκάλες της πολυκατοικίας τους.




Λύνοντας το πρόβλημα...

Ο 31χρονος μαθηματικός δρ. Baek Jineon, ερευνητής στο Κορεατικό Ινστιτούτο Προηγμένων Σπουδών, έδωσε τα τέλη του 2024 οριστική λύση στο πρόβλημα, δημοσιεύοντας μία εργασία 119 σελίδων στη βάση arXiv και κερδίζοντας παγκόσμια αναγνώριση για μια απόδειξη που επιτεύχθηκε χωρίς τη χρήση υπολογιστών. Πώς ξεκίνησαν όμως οι προσπάθειες επίλυσης του Moving Sofa Problem?

 

Ο «καναπές του Gerver»

Το 1992, ο μαθηματικός Joseph Gerver πρότεινε ένα καμπυλόγραμμο σχήμα, γνωστό ως «καναπές του Gerver», με εμβαδόν περίπου 2.2195 τετραγωνικών μονάδων, ως πιθανή λύση. Ωστόσο, μέχρι πρότινος, κανείς δεν είχε καταφέρει να αποδείξει ότι δεν μπορούσε να υπάρχει κάποιο άλλο σχήμα με μεγαλύτερο εμβαδόν.


Ο «καναπές του Gerver»
Ο "καναπές του Gerver"


Σχετικά πρόσφατα, λοιπόν, και έπειτα από επτά χρόνια συστηματικής εργασίας, ο δρ. Baek απέδειξε ότι ο σχεδιασμός του Gerver είναι πράγματι ο βέλτιστος. Κατέληξε στο συμπέρασμα ότι «δεν μπορεί να υπάρξει καναπές μεγαλύτερος από τον καναπέ του Gerver». Σε αντίθεση με πολλές προηγούμενες προσπάθειες, η δουλειά του βασίστηκε αποκλειστικά στη λογική μαθηματική συλλογιστική και όχι σε εκτεταμένες υπολογιστικές προσομοιώσεις.

 

Η έρευνα συμπεριλήφθηκε από το περιοδικό Scientific American στις «10 κορυφαίες μαθηματικές ανακαλύψεις του 2025».

Το περιοδικό σημείωσε ότι «ενώ πολλοί ερευνητές είχαν στηριχθεί σε μεγάλης κλίμακας προσομοιώσεις υπολογιστών για να προσεγγίσουν το μέγιστο μέγεθος του καναπέ, προκαλεί έκπληξη το γεγονός ότι η τελική λύση του Baek Jin Eon δεν εξαρτάται καθόλου από υπολογιστές».


Ο μαθηματικός δρ. Baek Jin Eon
Ο Κορεάτης μαθηματικός δρ. Baek Jineon
(Photo Courtesy of KIAS)


Ο δρ. Baek ξεκίνησε να ασχολείται με το "πρόβλημα μετακίνησης του καναπέ" κατά τη διάρκεια της στρατιωτικής του θητείας και συνέχισε τόσο στις διδακτορικές του σπουδές στις Ηνωμένες Πολιτείες Αμερικής, όσο και αργότερα ως μεταδιδακτορικός ερευνητής στη Νότια Κορέα. Σήμερα συνεχίζει να εργάζεται πάνω σε προβλήματα βελτιστοποίησης και προκλήσεις της συνδυαστικής γεωμετρίας. Παρόλο που ακόμη δεν έχει ολοκληρωθεί η διαδικασία peer review και δεν έχει γίνει επίσημη δημοσίευση σε επιστημονικό περιοδικό, πολλοί μαθηματικοί εκφράζουν ήδη υψηλή εμπιστοσύνη στην ορθότητα του αποτελέσματος…


Πέμπτη 1 Ιανουαρίου 2026

Καλή χρονιά!


Ευχόμαστε το 2026 να είναι γεμάτο με δημιουργική σκέψη, μαθηματική ομορφιά και ιδέες που μας πάνε ένα βήμα πιο πέρα -ίσως και εις το άπειρον! 


2026
Πηγή εικόνας: Μαθημαγικά 



2026
Πηγή εικόνας: Lisari blogspot 



2026
Πηγή εικόνας: Facebook|Matemáticas 



Δείτε εδώ και εδώ όλες τις ιδιότητες του αριθμού 2026.


Κυριακή 14 Δεκεμβρίου 2025

POV: Όταν με μια στροφή χάνεις τον προσανατολισμό - Η ταινία του Möbius


Το βίντεο από το κανάλι Numberphile παρουσιάζει νέους τρόπους οπτικοποίησης της ταινίας του Möbius ως ένα βασικό αντικείμενο της τοπολογίας. Η ταινία του Möbius έχει εκπληκτικές ιδιότητες που δεν είναι αυτονόητες με την πρώτη ματιά. Αν την κόψεις κατά μήκος, δεν θα πάρεις δύο νέα κομμάτια, αλλά μια μακρύτερη ταινία με περισσότερες στροφές. Κι αν προσπαθήσεις να την κόψεις σε τρία κομμάτια; Μικρές αλλαγές στην κατασκευή οδηγούν σε απρόσμενα αποτελέσματα...


 


Παρασκευή 19 Σεπτεμβρίου 2025

Το ChatGPT προσπάθησε να λύσει μαθηματικό πρόβλημα που είχε καταγράψει ο Πλάτωνας – Αυτά ήταν τα αποτελέσματα

 

Το πρόβλημα του διπλασιασμού του τετραγώνου παρουσιάζεται στον «Μένωνα» του Πλάτωνα γύρω στο 385 π.Χ., ως μέρος της φιλοσοφικής συζήτησης για την προέλευση της γνώσης. Εδώ και πάνω από 2.400 χρόνια, το πρόβλημα αυτό χρησιμοποιείται ως παράδειγμα στη διδασκαλία των μαθηματικών και συνεχίζει να πυροδοτεί φιλοσοφικές συζητήσεις για το αν η γνώση είναι έμφυτη ή αποκτάται με εμπειρία.

 

Το ChatGPT προσπάθησε να λύσει μαθηματικό πρόβλημα που είχε καταγράψει ο Πλάτωνας – Αυτά ήταν τα αποτελέσματα

Στον διάλογο «Μένων», ο Πλάτωνας περιγράφει για το πώς ο Σωκράτης προσκαλεί έναν από τους δούλους που τον συνοδεύουν, ο οποίος γνωρίζει ελληνικά αλλά όχι μαθηματικά, να εξετάσει μαζί του το εξής γεωμετρικό πρόβλημα: Με ποιον τρόπο μπορεί να διπλασιαστεί ένα τετράγωνο; Δηλαδή να βρούμε την πλευρά τετραγώνου το οποίο να έχει διπλάσιο εμβαδόν από το αρχικό. Το αγόρι στην αρχή έκανε λάθος λέγοντας ότι διπλασιάζοντας το μήκος των πλευρών, διπλασιάζεται και το εμβαδόν του. Ωστόσο, μέσω μιας σειράς ερωτήσεων, ο Σωκράτης το καθοδήγησε ώστε να βρει τη σωστή λύση: οι πλευρές του νέου τετραγώνου πρέπει να έχουν ίδιο μήκος με τη διαγώνιο του αρχικού τετραγώνου.


Το πρόβλημα του διπλασιασμού του τετραγώνου


Η αλγεβρική λύση και η... άποψη του ChatGPT

Οι ερευνητές Δρ. Nadav Marco και Καθηγητής Ανδρέας Στυλιανίδης έθεσαν το ίδιο πρόβλημα στο ChatGPT-4. Εξέτασαν την ικανότητα του chatbot να βρίσκει λύσεις, θέτοντας μια σειρά ερωτήσεων στην ίδια λογική με αυτή του Σωκράτη. Το κεντρικό ζητούμενο ήταν κατά πόσο το chatbot θα κατόρθωνε να λύσει το πρόβλημα, είτε αντλώντας πληροφορίες από την τεράστια βάση δεδομένων με την οποία εκπαιδεύεται, είτε αναπτύσσοντας λύσεις. «Όταν ερχόμαστε αντιμέτωποι με ένα νέο πρόβλημα, το ένστικτό μας συχνά είναι να δοκιμάζουμε πράγματα βασισμένα σε προηγούμενη εμπειρία μας. Στο πείραμά μας, το ChatGPT φάνηκε να κάνει κάτι παρόμοιο», δήλωσε ο Δρ. Marco. 

Συγκεκριμένα, οι ερευνητές ζήτησαν από το ChatGPT-4 να βρει την πλευρά του τετραγώνου που θα έχει διπλάσιο εμβαδόν από το τετράγωνο πλευράς 2. Το chatbot, έπειτα από αλγεβρικούς υπολογισμούς, έδωσε την απάντηση \(\sqrt{8}\). Όταν οι ερευνητές προσπάθησαν να το «παγιδεύσουν» να κάνει το ίδιο λάθος με το αγόρι από το «Μένωνα», ρωτώντας το μήπως πρέπει να διπλασιαστεί η πλευρά του αρχικού τετραγώνου, αυτό δεν έκανε λάθος. Εκεί, όμως, που φάνηκε να δυσκολεύεται ήταν η γεωμετρική λύση του προβλήματος. Καθώς ο άρρητος \(\sqrt{8}\) δεν είναι ακριβώς ίσος ούτε με 2,82 ούτε με 2,83, αν σχεδιάζαμε ένα τετράγωνο με πλευρά 2,82 ή 2,83, το νέο τετράγωνο δεν θα είχε ακριβώς το διπλάσιο εμβαδόν, αλλά λίγο μικρότερο ή λίγο μεγαλύτερο από 8. Το ChatGPT όμως επέμενε ότι πρακτικά θα ήταν αποδεκτή μια στρογγυλοποίηση  όπως το 2,8 ή εναλλακτικά πρότεινε τη μέτρηση με χρήση οργάνων ακριβείας! 

 

Η γεωμετρία δεν είναι το δυνατό σημείο των LLM

Το ChatGPT σε γενικές γραμμές δυσκολεύεται να αποδώσει καλά σε γεωμετρικούς συλλογισμούς, δεδομένου ότι πρόκειται για μεγάλο γλωσσικό μοντέλο (LLM) που εκπαιδεύεται σε κείμενα και η πρόσβαση σε γεωμετρικές αναπαραστάσεις χρειάζεται υποβοήθηση. Παρ’ όλα αυτά, οι ερευνητές ανέμεναν ότι θα κατόρθωνε να αναγνωρίσει ένα ευρέως γνωστό πρόβλημα και θα αναπαρήγαγε την κλασική γεωμετρική λύση του Σωκράτη.

«Αν απλώς ανακαλούσε από μνήμης, θα ήταν σχεδόν βέβαιο ότι θα ανέφερε κατευθείαν την κλασική λύση της δημιουργίας του νέου τετραγώνου από τη διαγώνιο του αρχικού», εξηγεί ο Καθηγητής Στυλιανίδης. «Αντιθέτως, φαίνεται ότι η συμπεριφορά του LLM εξαρτάται από τα συμφραζόμενα». 

Παραδόξως, το chatbot αρχικά επέλεξε την αλγεβρική μέθοδο επίλυσης εξίσωσης δευτέρου βαθμού, που ήταν άγνωστη στην εποχή του Πλάτωνα, και δεν προσέφερε αυθόρμητα τη γεωμετρική λύση. Μόνο όταν οι ερευνητές εξέφρασαν την «απογοήτευσή» τους, το chatbot έδωσε την γεωμετρική λύση της διαγωνίου.

Οι ερευνητές στη συνέχεια του έθεσαν δύο νέες προκλήσεις: τον διπλασιασμό του εμβαδού ενός ορθογώνιου παραλληλόγραμμου και ενός τριγώνου, διατηρώντας τις αρχικές αναλογίες. Και στις δύο περιπτώσεις, το ChatGPT επέλεξε ξανά την αλγεβρική λύση, αγνοώντας την προτίμηση των ερευνητών για τη γεωμετρική.

Όταν, δε, ρωτήθηκε για το πρόβλημα του ορθογώνιου, υποστήριξε λανθασμένα ότι η διαγώνιος προσφέρει άμεση γεωμετρική λύση. Οι ερευνητές πιστεύουν ότι το λάθος δεν προερχόταν από τη βάση δεδομένων του, αλλά ότι ήταν μία εικασία βασισμένη στην προηγούμενη συζήτησή τους για τη διαγώνιο του τετραγώνου. Δηλαδή το ChatGPT παρήγαγε ένα λάθος, όχι επειδή «θυμόταν» λάθος, αλλά επειδή κατασκεύασε μια νέα, λανθασμένη λύση (το λεγόμενο genetic error). Ωστόσο, ύστερα από περαιτέρω καθοδήγηση, βρήκε εντέλει τη σωστή γεωμετρική λύση.

Οι ερευνητές συμπέραναν ότι, από την οπτική του χρήστη, η συμπεριφορά του ChatGPT ανακατεύει ανάκληση δεδομένων με συλλογιστική… της στιγμής. Την συνέκριναν με τη «ζώνη επικείμενης ανάπτυξης», την απόσταση δηλαδή ανάμεσα σε αυτά που γνωρίζει ήδη κάποιος και σε αυτά που θα μπορούσε να μάθει με καθοδήγηση.

Όμως αυτοί οι περιορισμοί της ΤΝ, σύμφωνα με την ερευνητική ομάδα, θα μπορούσαν να αποδειχθούν ευκαιρία μάθησης για τους σπουδαστές, τους οποίους συμβουλεύουν να δίνουν στο chatbot εντολές που ενθαρρύνουν τη συνεργατική επίλυση προβλημάτων αντί απλώς να ζητούν την απάντηση. Με αυτόν τον τρόπο, θα εξασκήσουν τη δική τους κριτική σκέψη και συλλογιστική ικανότητα.

Η έρευνα δημοσιεύθηκε στο ακαδημαϊκό περιοδικό International Journal of Mathematical Education in Science and Technology.


Πέμπτη 31 Ιουλίου 2025

Από τον Απολλώνιο στα... αραβικά χειρόγραφα και τελικά στην... Ολλανδία!


Μια εμπεριστατωμένη έρευνα «κόντρα» στις ανακριβείς και παραπλανητικές αντιγραφές του διαδικτύου


Από τον Απολλώνιο στα... αραβικά χειρόγραφα και τελικά στην... Ολλανδία_εις το άπειρον


Κρυμμένοι… θησαυροί

Ο Απολλώνιος ο Περγεύς  (262 π.Χ.–190 π.Χ.) είναι γνωστός για το πρωτοποριακό του έργο στην Γεωμετρία. Υπήρξε ένας από τους μεγαλύτερους μαθηματικούς και γεωμέτρες της αρχαιότητας. Γεννήθηκε στην αρχαία ελληνική πόλη Πέργη της Μικράς Ασίας. Σπούδασε και δίδαξε στην Αλεξάνδρεια και, μεταξύ των άλλων, συνέγραψε το έργο «Κωνικά». Σε αυτό, ανέπτυξε συστηματικά τις έννοιες της έλλειψης, της παραβολής και της υπερβολής (ο κύκλος μελετάται στα Κωνικά ως ειδική περίπτωση της έλλειψης), επηρεάζοντας βαθιά τα μαθηματικά και την αστρονομία τόσο της ελληνιστικής περιόδου όσο και των μεταγενέστερων πολιτισμών.


Ο Απολλώνιος ο Περγεύς
Ο Απολλώνιος ο Περγεύς, γνωστός κυρίως για το έργο του "Κωνικά" που μελετά τις κωνικές τομές. Πηγή εικόνας: Wikipedia



Από τα οκτώ βιβλία που αποτελούσαν τα «Κωνικά», τα πρώτα τέσσερα διασώζονται στα ελληνικά, ενώ τα πέμπτο έως έβδομο είναι γνωστά μόνο από μεσαιωνικές αραβικές μεταφράσεις, που αποδίδονται πιθανώς στον Θαμπίτ Ιμπν Κούρρα και μεταγενέστερους λογίους της ισλαμικής Χρυσής Εποχής. Το όγδοο βιβλίο θεωρείται χαμένο.

Τα αραβικά χειρόγραφα με τα βιβλία 5–7 είχαν αποκτηθεί τον 17ο αιώνα από τον Ολλανδό ανατολιστή και μαθηματικό Jacob Golius, ο οποίος, κατά τη διάρκεια των ταξιδιών του στη Μέση Ανατολή, τα μετέφερε στο Πανεπιστήμιο του Leiden στην Ολλανδία, σε μια τεράστια συλλογή σχεδόν 200 χειρογράφων. Τα χειρόγραφα αυτά είχαν ταξινομηθεί και μελετηθεί από τους επιστήμονες της εποχής και δεν παρέμεναν ξεχασμένα (όπως λανθασμένα αναφέρεται σε πολλά άρθρα στο διαδίκτυο). Η αξία τους όμως αναδεικνύεται ξανά μέσα από σύγχρονες μελέτες, οι οποίες προβάλλουν όχι μόνο το έργο του Απολλώνιου, αλλά και τον ρόλο του ισλαμικού πολιτισμού στη διάσωση και μετάδοση της αρχαίας ελληνικής γνώσης.

Η πρόσφατη επανεξέταση των αραβικών χειρογράφων συνοδεύεται από μελέτη της καλλιγραφίας και των γεωμετρικών διαγραμμάτων που περιέχουν, προσφέροντας μια μοναδική εικόνα για τη μαθηματική παράδοση της ισλαμικής περιόδου. Ο Ολλανδός μαθηματικός και ιστορικός της επιστήμης Jan Pieter Hogendijk τόνισε τη σημασία αυτών των τεκμηρίων ως απόδειξη της πνευματικής ακμής και επιστημονικής πειθαρχίας των μουσουλμάνων λογίων του Μεσαίωνα.


Τμήμα από την αραβική μετάφραση των "Κωνικών" του Απολλώνιου. Πηγή εικόνας και πνευματικά δικαιώματα: Leiden University Libraries


Η επιρροή της επιστημονικής παράδοσης του Ισλάμ και η σημασία της σήμερα

Η επιστημονική γνώση της αρχαιότητας, και ιδιαίτερα των Ελλήνων, δεν χάθηκε, αλλά διασώθηκε και μεταδόθηκε μέσω της ισλαμικής επιστημονικής παράδοσης από τον 8ο έως τον 13ο αιώνα. Πλήθος ελληνικών έργων μεταφράστηκαν στα αραβικά, επεκτάθηκαν και εν τέλει διοχετεύτηκαν στην Ευρώπη, συμβάλλοντας καθοριστικά στην ευρωπαϊκή Αναγέννηση.

Σε αυτό το πλαίσιο, ο καθηγητής Mostafa Zahri του Πανεπιστημίου Sharjah υπογράμμισε τη σημασία της συντήρησης και μελέτης των αραβικών χειρογράφων, τα οποία συχνά παραμένουν αναξιοποίητα σε βιβλιοθήκες της Δύσης. Τον Ιανουάριο του 2025, στο Πανεπιστήμιο Sharjah διοργανώθηκε υπό την αιγίδα του SIFHAMS (Sharjah International Foundation for the History of Arab and Muslim Sciences), διεπιστημονικό εργαστήριο (workshop), όπου συνεργάστηκαν ερευνητές από τον αραβικό και δυτικό κόσμο, με σκοπό την εμβάθυνση στη μελέτη αυτών των πηγών.


Λεπτομέρεια από την αραβική μετάφραση των "Κωνικών" του Απολλώνιου, όπου διακρίνονται οι κωνικές τομές. Leiden University Libraries
Λεπτομέρεια από την αραβική μετάφραση των "Κωνικών" του Απολλώνιου, όπου διακρίνονται οι κωνικές τομές. Πηγή εικόνας και πνευματικά δικαιώματα: Leiden University Libraries 



Στο πλαίσιο της εκδήλωσης μελετήθηκε και το αριθμητικό σύστημα Abjad, στο οποίο τα γράμματα του αραβικού αλφαβήτου αντιστοιχούν σε αριθμούς (π.χ. alif = 1, baa = 2,…) και εμφανίζεται αλφαβητική-αλγεβρική χρήση αριθμών. Αν και δεν φέρεται να χρησιμοποιήθηκε ως κύριο αριθμητικό σύστημα σε επιστημονικά όργανα όπως ο αστρολάβος, όπως λανθασμένα διαβάζουμε σε αρκετά άρθρα, το Abjad παρουσιάζει ενδιαφέρον για την κατανόηση της συμβολικής και μαθηματικής σκέψης της εποχής.

Εκτός από τα βιβλία 5-7 των «Κωνικών» του Απολλώνιου, στο παραπάνω εργαστήριο επαναξιολογήθηκαν και άλλες γνώσεις των Αρχαίων Ελλήνων που διασώθηκαν χάρη στις αραβικές μεταφράσεις, όπως το «Περί Ύλης Ιατρικής» του Διοσκουρίδη, τρόποι κατασκευής ενός αστρολάβου σε χειρόγραφο του Al-Biruni, καθώς και χάρτες της εποχής εκείνης και δόθηκε ώθηση στην ανάδειξη αυτών των τεκμηρίων. Μάλιστα, από την Amsterdam University Press εκδόθηκε το Σεπτέμβριο του 2024 το βιβλίο Prophets, Poets and Scholars:  The Collections of the Middle Eastern Library of Leiden University, το οποίο καλύπτει την ιστορία, τη συλλογή και την εικονογράφηση των αραβικών χειρογράφων — ανάμεσά τους και όσα περιέχουν μέρος του έργου του Απολλώνιου.

Παρά την τεράστια σημασία τους, πολλά χειρόγραφα παραμένουν ανεξερεύνητα. Η συνεχιζόμενη προσπάθεια ψηφιοποίησης και η διαπολιτισμική συνεργασία, όπως αυτή στο Πανεπιστήμιο Sharjah, αποτελούν πολύτιμα εργαλεία για τη μελέτη της ιστορίας της επιστήμης και για την ανάδειξη της παγκόσμιας συνεισφοράς του ισλαμικού και αρχαιοελληνικού πνεύματος στην εξέλιξη των μαθηματικών και των φυσικών επιστημών.

 

Πηγές:

Amsterdam University Press|“Prophets, Poets and Scholars:  The Collections of the Middle Eastern Library of Leiden University”

EurekAlert.org

Ksnt.com

Leiden University Libraries

Wikipedia.org|Απολλώνιος ο Περγεύς


Δευτέρα 3 Μαρτίου 2025

Ο χαρταετός!

 

Γράφει ο Αθ. Δ. Γκίκας, Μαθηματικός


Δημήτρης Μυταράς (1934-2017) - "Χαρταετοί"
Δημήτρης Μυταράς (1934-2017) - "Χαρταετοί"

 

Κάποιες ατέλειωτες νύχτες φέρνω πίσω από τα πέλαγα του χρόνου τα βιώματά μου τα παλιά και ακούραστα. Τα βιώματά μου είναι η μαγιά για το κείμενο που ακολουθεί. Λες πάντα καλύτερα την ιστορία που έχεις κατακτήσει. Αν δεν έχεις τα βιώματα δεν έχεις τίποτα. Τα αληθινότερα κείμενα είναι εκείνα που έχουν αφετηρία τον εαυτό μας. Θα επιχειρήσω να εξισορροπήσω την αλήθεια με την αναγνωσιμότητα.
Έθιμο της Καθαράς Δευτέρας είναι το πέταγμα του χαρταετού. Η οικογένεια αφού επιβιβαστεί στο αυτοκίνητό της, πάρει και τα απαραίτητα φαγώσιμα, θα σταματήσει στο κοντινό περίπτερο ν’ αγοράσει το χαρταετό, έτσι για να διατηρηθεί το έθιμο. 
Ποιο χαρταετό θα μου πείτε; Αυτόν με τις φιγούρες από σύγχρονα κόμικς στην επιφάνειά του ή με σήμα κάποιας ποδοσφαιρικής ομάδας. Και αφού πάνε στην εξοχή θ’ αρχίσει η διαδικασία το πετάγματος πλην ματαίως, τις περισσότερες φορές.


Η σκηνή σαν και τούτη:


-  Ο μικρός θα γκρινιάζει γιατί ο δικός του δεν «σηκώθηκε».
- Ο πατέρας μπλεγμένος μες στους σπάγγους και το ξερόχορτο θα ρίχνει τις ευθύνες στη μητέρα γιατί δεν του έκανε καλό «κεφάλι».
-     Όταν ξεμπλέξει με το λιγοστό σπάγγο που θα του έχει απομείνει θα τρέχει σαν τρελλός στα χωράφια για να πάρει λίγο ύψος ο αετός. Ύστερα περήφανος θα εξομολογείται:  Τον «σήκωσα» και φέτος !


Σπύρος Βασιλείου (1903-1985) - "Τα σαρακοστιανά" (1950)

Η ημέρα θα κυλίσει με άριστες επιδόσεις στην κατανάλωση λαγάνας, ταραμοσαλάτας, καλαμαριών καβουριών και άλλων «σαρακοστιανών» και περιχαρείς θα επιστρέψουν στο σπίτι. Περιχαρείς; Όλο και κάποιοι θα νοιώθουν εκείνο το κενό μέσα τους, το ονομαζόμενο «μεθεόρτιο σύνδρομο» από τους ψυχολόγους, που προέρχεται από τις πολλές ελπίδες που είχαν στηρίξει στην Καθαροδευτεριάτικη έξοδο και δεν επαληθεύτηκαν.
Και πώς να μην γίνει έτσι. Πόσο κοπίασαν για τον αετό; Τί ξέρουν για το σκελετό του με τα «ψυχοκάλαμα» ; Πόσο κοπίασαν για τα ζύγια του; Ας είναι καλά οι πήχες από το ξυλουργείο κι η βιοτεχνία που φτιάχνει αετούς χωρίς «ψυχή»; Πώς ν’ ασχοληθείς με το πέταγμα, αφού δεν καταπιάστηκες ποτέ με την κατασκευή του και μέσα από αυτή, διδάσκοντας την στα παιδιά σου, να δίνεις και να παίρνεις και συ χαρά; Χωρίς περιστροφές θα πω ότι τα πράγματα στις ημέρες μου ήταν καλύτερα. Τούτο όχι από συνήθεια που έχουμε οι παλιότεροι να ωραιοποιούμε καταστάσεις που ζήσαμε… και τότε δεν ήταν όλα ωραία. Άλλα πράγματα ήταν χειρότερα από σήμερα.
Όμως επειδή ο λόγος πρέπει να είναι «ορθός αποδεικτικός», όπως στα ΜΑΘΗΜΑΤΙΚΑ, θα επιχειρήσω τη σύγκριση κι ας βγάλει ο αναγνώστης τα συμπεράσματά του.


Πρώτα πρώτα για μας το πέταγμα του αετού δεν ήταν σαν το «στιγμιαίο αδίκημα» δηλ. αγοράζω την Κ. Δευτέρα το πρωί, κάνω προσπάθεια για πέταγμα και τελείωσα. Ήταν ολόκληρη ιεροτελεστία που άρχιζε μια δυο εβδομάδες πριν. Όταν είσαι νέος έχεις το χρόνο στο πλευρό σου ανεξάντλητο κα όλα είναι συναρπαστικά.

- Πρώτα τα καλάμια για το σκελετό. Ας ήταν καλά τα μαντριά προβάτων. Και σήμερα αν θέλει κάποιος μπορεί να βρει δίπλα σε  αυλάκια.
- Μετά τη φροντίδα για τις κόλλες, το ζυμάρι που θα τις κολλούσε.
- Ο σπάγγος ο κερωμένος για να κρατάει καλύτερα.
- Κουρέλια ή φύλλα από το κιντρινόχρωμο πρόχειρο σχολικό τετράδιο, για την ουρά. Βλέπεις δεν έφτανε η «δραχμή» ν’ αγοράσεις και δεύτερη κόλλα για τις φούντες της ουράς.


Τα δύσκολα άρχιζαν στην συναρμολόγηση. Πώς θα κατορθώσεις να φτιάξεις το κανονικό εξάγωνο. Το μυστικό πήγαινε από τα μεγαλύτερα παιδιά της παρέας στα μικρότερα έτσι εμπειρικά. Εγώ το διδάχτηκα από τον ξαδελφό μου Κ. Γκίκα γεωπόνο, που με τα μακριά και επιδέξια δάκτυλά του έκανε τους καλύτερους χαρταετούς. Θαύμαζα τους αετούς του. Σήμερα δε θαυμάζουμε αλλά θαμπωνόμαστε από ένα συμβάν επιτυχίας. Παλαιά υπήρχαν πρότυπα σε γειτονιές, στο σχολείο, στα αθλήματα, σε εργασιακούς χώρους, όπου μια δεξιότητα μας κέντριζε σε άμιλλα. Θαυμασμός εσωτερικός . ήταν αναμέτρηση με τους εαυτούς μας. Γιατί ο Κώστας φτιάχνει αετό και να μη μπορώ και γω! Έτσι όχι μόνο μαθαίναμε, αλλά συγχρόνως γινόμασταν καράβι που μετέφερε τη γνώση στο επόμενο λιμάνι της αρχέγονης αλυσίδας ζωής. Αν το φορτίο το παραδώσαμε σωστά, τότε η ζωή μας έχει νόημα.


Στην παρουσίαση της κατασκευής θα ακολουθήσω την αρχή της εποπτικότητας, με σκοπό διδακτικό, αισθητικό και κύρια τεκμηριωτικό. Αφού και τα τρία καλάμια ΑΔ, ΓΖ, ΒΕ κεντραριζόντουσαν στο μέσο Ο με καρφίτσα αρχικά για να μπορεί να περιστρέφονται, με την αρχή του σπάγγου στο σημείο Α μετρούσαμε μέχρι το Ο και δέναμε στο Β. Πάλι από το Β μετρούσαμε μέχρι το Ο και δέναμε στο Γ κ.λ.π. Έτσι το εξάγωνο ήταν έτοιμο. Έπρεπε να γίνω Μαθηματικός για να δώσω τη θεωρητική εξήγηση στην κατασκευή του κανονικού εξαγώνου μ’ αυτόν τον τρόπο που περιέγραψα.

 

 

Σχήμα του Αθ.Δ. Γκίκα με τα μαθηματικά του χαρταετού
Σχήμα του Αθ.Δ. Γκίκα με τα μαθηματικά του χαρταετού

 

Η εμπειρική κατασκευή στηρίζεται στην Μαθηματική αλήθεια ότι:
Η πλευρά του κανονικού εξαγώνου ΑΒ = ΑΟ = R = ακτίνα περιγεγραμμένου κύκλου.

Από την κατασκευή του αετού ξεκινούσα στη Β΄ Λυκείου την διδασκαλία του κανονικού εξαγώνου, έτσι όπως απαιτεί η διδακτική των Μαθηματικών από την εμπειρία στο θεωρητικό μοντέλο και αντίστροφα.

 

από την εμπειρία στο θεωρητικό μοντέλο και αντίστροφα


Στα πρώτα χρόνια υπήρχαν μαθητές, που βοηθούσαν στο πέρασμα από την εμπειρία στη θεωρία. Σιγά σιγά, όλο και λιγόστευαν, αφού κανένας γονιός δεν δίδαξε το παιδί του πώς να φτιάχνει αετό. Αν το είχε κάμει θα του είχε μάθει χωρίς καλά καλά να το καταλαβαίνει ο ίδιος και τις ιδιότητες του κανονικού εξαγώνου – θα φανεί παρακάτω του λόγου το ασφαλές. Ας έλθουμε στα ζύγια που πετάγματος ΚΑ, ΚΒ, ΚΟ και της ουράς ΛΕ, ΛΔ.

Σχεδόν πάντοτε όλα είχαν το ίδιο μήκος με την πλευρά (ακτίνα). Όμως, αν ήθελε κάποιος να παίρνει ύψος ο αετός του, κρατούσε το μεσιανό, το ΚΟ μικρότερο, όχι όσο αυτός ήθελε. Τα Μαθηματικά έχουν και πάλι το λόγο, όσο δηλ. το απόστημα ΟΘ του κανονικού εξαγώνου. Εφαρμόζοντας το Πυθαγόρειο Θεώρημα στο τρίγωνο ΟΓΘ θα βρείτε:

 \(ΟΘ=\frac{R \sqrt{3}}{2} \simeq 0,86R\)

 

Και επειδή η πλευρά του κανονικού εξαγώνου είναι όσο και η ακτίνα, το μεσαίο ζύγι είναι τα 0,86 πλευράς. Κατ’ αυτό τον τρόπο, ο αετός υψωνόταν σχεδόν κατακόρυφα, ο σπάγγος του δεν έκανε «κοιλιά», που δεν ήταν τίποτα άλλο από την αλυσοειδή καμπύλη της Θεωρητικής Μηχανικής.


Περιέγραψα την κατασκευή για να είναι η σύγκριση ευχερής. Εμάς μας γέμιζε πριν απ’ όλα η προετοιμασία. Το πέταγμα ήταν η κορύφωση. Νοιώθαμε έρωτα γι’ αυτόν. Τον μαθαίναμε και τον χορταίναμε κατασκευάζοντάς τον. Και όταν τον βλέπαμε να σηκώνεται στα ύψη νοιώθαμε περισσότερο ελεύθεροι. Νικούσαμε την βαρύτητα της Γής που μας κρατά καθηλωμένους χιλιάδες χρόνια πάνω της. Λίκνο του ανθρώπινου γένους και του πολιτισμού του η γη, αλλά και τα δεσμά του. Σαν τον υψώναμε ψηλά και η καλούμπα είχε φτάσει στο τέλος, του στέλναμε και ένα «μήνυμα» του αετού ! Τι ήταν το μήνυμα; Ένα στρογγυλό χαρτί με μια τρύπα στη μέση, συνήθως από το πακέτο τσιγάρων των θεριακλήδων της παρέας, που το περνούσαμε στο σπάγγο και ο αέρας το προχωρούσε μέχρι τον αετό! Έτσι με το πέταγμα το αετού περνούσαμε τις ελεύθερες ώρες σχεδόν όλο το σαρανταήμερο. Όσο κρατούσε το ανοιξιάτικο βοριαδάκι και μας το επέτρεπε. Μετά τον κρεμούσαμε στο υπόγειο, εφόσον δεν είχε καρφωθεί σε κανένα δένδρο. Σύρματα της Δ.Ε.Η. δεν υπήρχαν για εμπόδια και ηλεκτροπληξίες. Έφτιαξα αετούς για τα παιδιά μου, τα ανίψια μου και τον εγγονό μου.
Θα πει κάποιος: Αφού δίδαξες τα παιδιά σου, συ κατασκευάζεις και για το εγγόνι;
-  Ε! λοιπόν, ναι. Τα παιδιά δεν τα είδα αποφασισμένα να γονατίσουν στο πάτωμα και ν’ ανακατευτούν με κόλλες, ψαλίδια και σπάγγους. Τα είδα να κατευθύνονται στο γειτονικό περίπτερο!! Εγώ πάντως κάτι κερδίζω. Γίνομαι πάλι παιδί. Μόνο δυο φορές στη ζωή μας γινόμαστε παιδιά. Όταν είμαστε πραγματικά παιδιά και όντας μεγάλοι, να μπορούμε να κατακτήσουμε πάλι όσα μας έκαναν εντύπωση ως παιδιά. Η παιδική μνήμη είναι παντοδύναμη. Παραμένουμε ζωντανοί χάρη στην αυταξία ορισμένων στιγμών, που επιλέγουμε, δημιουργώντας μια δεύτερη ροή παράλληλη με τις ρυτίδες μας. 

 

Πηγή: Λαμιακός Τύπος


Αλέκος Φασιανός (1935-2022) - "Χαρταετός"

 

🌐Ένα αναλυτικό tutorial για την κατασκευή χαρταετού, καθώς και τη Φυσική που χρησιμεύει για το πέταγμα του χαρταετού, θα βρείτε στο ιστολόγιο Πειράματα Φυσικής με Απλά Υλικά.