Εμφάνιση αναρτήσεων με ετικέτα αναλυτική γεωμετρία. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα αναλυτική γεωμετρία. Εμφάνιση όλων των αναρτήσεων

Τετάρτη 14 Φεβρουαρίου 2024

Ο Άγιος Βαλεντίνος πάει Λύκειο...


Κάθε γραμμή στο επίπεδο είναι μια γεωμετρική οντότητα, η οποία "συνοδεύεται" και από τη δική της εξίσωση, που είναι η αλγεβρική της "υπόσταση". Αυτή είναι η βασική σύνδεση της Άλγεβρας με τη Γεωμετρία. Για παράδειγμα, η εξίσωση της μορφής \( αx + βy = γ \), με \( α \neq 0 \) ή \( β \neq 0 \) παριστάνει ευθεία. Η εξίσωση της μορφής \( x^2 + y^2 = ρ^2 \) παριστάνει κύκλο. 

Αν θέλεις να ζωγραφίσεις μία καρδιά, μπορείς να χρησιμοποιήσεις μία από τις παρακάτω εξισώσεις. Η πρώτη καμπύλη (πάνω αριστερά) ονομάζεται καρδιοειδής καμπύλη.


Wolfram Mathworld heart
Πηγή εικόνας: Wolfram MathWorld


Στο σχολείο μας, είπαμε να αφήσουμε για μια στιγμή την ευθεία και τον κύκλο των Μαθηματικών Κατεύθυνσης της Β΄ και να σχεδιάσουμε, χρησιμοποιώντας το Geogebra, τη δική μας καρδιά... 


Geogebra 1ο ΓΕΛ Καλύμνου Μαθηματικά Κατεύθυνσης




Geogebra heart


Geogebra heart



Σάββατο 1 Αυγούστου 2020

Τα Μαθηματικά στην Τέχνη: Ελλειπτικό παραβολοειδές


Τα βιβλία γράφουν...

Ελλειπτικό παραβολοειδές είναι μια τετραγωνική επιφάνεια, δηλαδή επιφάνεια 2ου βαθμού.
Η επιφάνεια του ελλειπτικού παραβολοειδούς είναι απεριόριστη και έχει δύο κάθετα μεταξύ τους επίπεδα συμμετρίας. Η τομή των επιπέδων συμμετρίας είναι ο άξονας συμμετρίας της επιφάνειας, ο οποίος την τέμνει σε ένα σημείο που ονομάζεται κορυφή της επιφάνειας.
Κάθε τομή της επιφάνειας με επίπεδο κάθετο στον άξονά της είναι μια έλλειψη. Κάθε τομή της επιφάνειας με επίπεδο παράλληλο στα επίπεδα συμμετρίας είναι μια παραβολή. Αυτό δικαιολογεί και την ονομασία της επιφάνειας αυτής.
Αν η τομή της επιφάνειας με επίπεδο κάθετο στον άξονά της είναι κύκλος, τότε η επιφάνεια είναι εκ περιστροφής, γιατί μπορεί να προκύψει δια περιστροφής μιας παραβολής περί τον άξονα αυτόν.

Σύγχρονοι ζωγράφοι, γραφίστες, αλλά και γλύπτες έχουν χρησιμοποιήσει το ελλειπτικό παραβολοειδές στα έργα τέχνης τους.

Don Barrett (Σύγχρονος γραφίστας) - "3D Parabola" 

Mia McLean (Σύγχρονη ζωγράφος) - "Jellyfish Ice Cream Cone" (2020)

Maureen Bell (Σύγχρονη γλύπτρια) - "Parabola" 


Το ελλειπτικό παραβολοειδές έχει χρησιμοποιηθεί και στη σύγχρονη αρχιτεκτονική, δημιουργώντας ενδιαφέρουσες δομές, όπως είναι οι τρούλοι.

Reichstag Dome, ο τρούλος στο κτίριο της γερμανικής Βουλής, Βερολίνο, Γερμανία. Σχεδιασμένο από τον αρχιτέκτονα Norman Foster.

Το Πλανητάριο Carl Zeiss στο Bochum της Γερμανίας. Ο τρούλος του, σε σχήμα ελλειπτικού παραβολοειδούς, έχει διάμετρο 20 μέτρα 

Το κτίριο του Κογκρέσου, Μπραζίλια, Βραζιλία. Σχεδιάστηκε από τον αρχιτέκτονα Oscar Niemeyer
Το κτίριο του Κογκρέσου, Μπραζίλια, Βραζιλία. Σχεδιάστηκε από τον αρχιτέκτονα Oscar Niemeyer.

Το κτίριο του Κογκρέσου, Μπραζίλια, Βραζιλία. Σχεδιάστηκε από τον αρχιτέκτονα Oscar Niemeyer
"The Congress IV", λεπτομέρεια από το κτίριο του Κογκρέσου στη Μπραζίλια. Φωτογραφία: Todd Eberle 


.*.~.*.~.*.~.*.~.*.~.*

"Είναι κάτι που οι μη μαθηματικοί δεν μπορούν να αντιληφθούν πλήρως. Τα μαθηματικά στην πραγματικότητα είναι σχεδόν εξ ολοκλήρου ζήτημα αισθητικής".
J.H. Conway

.*.~.*.~.*.~.*.~.*.~.*


Πηγές:

Τετάρτη 1 Ιουλίου 2020

Τα Μαθηματικά στην Τέχνη: Μονόχωνο Υπερβολοειδές


Τα βιβλία γράφουν...

Το μονόχωνο υπερβολοειδές εκ περιστροφής είναι τετραγωνική επιφάνεια και παράγεται από την περιστροφή ευθείας γύρω από άξονα, ασύμβατο προς την ευθεία. Ο άξονας αυτός λέγεται άξονας του μονόχωνου υπερβολοειδούς και είναι άξονας συμμετρίας του. Το μονόχωνο υπερβολοειδές εκ περιστροφής έχει επίσης κέντρο συμμετρίας. Κάθε ευθεία του μονόχωνου υπερβολοειδούς είναι γενέτειρα της επιφάνειας.
Κάθε επίπεδο κάθετο στον άξονα του μονόχωνου υπερβολοειδούς εκ περιστροφής, το τέμνει σε κύκλο. Κάθε επίπεδο που περιέχει τον άξονα του μονόχωνου υπερβολοειδούς, το τέμνει σε υπερβολή. Έτσι,το μονόχωνο υπερβολοειδές εκ περιστροφής μπορεί να προκύψει δια περιστροφής μιας υπερβολής γύρω από τον άξονα αυτό.


Connelly Barnes (Σύγχρονος ζωγράφος) - "Hyperbola"

Don Barrett (Σύγχρονος γραφίστας) - "Apocalypse Soon" 


Το μονόχωνο υπερβολοειδές έχει χρησιμοποιηθεί πολύ συχνά στη σύγχρονη αρχιτεκτονική, δημιουργώντας ενδιαφέρουσες φόρμες.

Πύργος ελέγχου εναέριας κυκλοφορίας, Διεθνής Αερολιμένας Newcastle, Ηνωμένο Βασίλειο

Πλανητάριο James McDonnell, Μισσούρι, Η.Π.Α.

Ο Πύργος του Canton, Guangdong, Κίνα.

Καθεδρικός Ναός της Μπραζίλια, Βραζιλία. Σχεδιάστηκε από τον αρχιτέκτονα Oscar Niemeyer και ολοκληρώθηκε το 1970. 
 
 
Γέφυρα μεταξύ κτιρίων στο Manchester της Αγγλίας
 
Ο πρώτος πύργος σε σχήμα μονόχωνου υπερβολοειδούς ήταν ένας πύργος νερού που κατασκευάστηκε το 1896 στη Ρωσία, από τον αρχιτέκτονα Vladimir Shukhov.



Πηγές:
  • Θ. Κουφογιώργος, Μαθήματα Αναλυτικής Γεωμετρίας, Τυπογραφείο Πανεπιστημίου Ιωαννίνων, 2004
  • E.H. Gombrich, Το Χρονικό της Τέχνης, Μορφωτικό Ίδρυμα Εθνικής Τραπέζης, 1995
  • Wassily Kandinsky, Σημείο-Γραμμή-Επίπεδο, Εκδόσεις Δωδώνη, 2013
  • Wassily Kandinsky, Για το πνευματικό στην Τέχνη, Εκδόσεις Νεφέλη, 1981
  • H.L.C. Jaffe, Η ζωγραφική στον 20ό αιώνα, Εκδόσεις Νεφέλη, 1984
  • Connelly Barnes
  • Pixels: Don Barrett art
  • Wikipedia: Hyperboloid
  • Wikipedia: Hyperboloid Structure
  • Wolfram Mathworld: One-Sheeted Hyperboloid

Δευτέρα 1 Ιουνίου 2020

Τα Μαθηματικά στην Τέχνη: Ελλειψοειδές


Τα βιβλία γράφουν...

Το ελλειψοειδές είναι μια τετραγωνική επιφάνεια, δηλαδή αλγεβρική επιφάνεια 2ου βαθμού. Είναι κλειστή και πεπερασμένη επιφάνεια, με τρία επίπεδα συμμετρίας, που είναι ανά δύο κάθετα μεταξύ τους. Στη γενική περίπτωση, κάθε επίπεδο συμμετρίας τέμνει την επιφάνεια σε έλλειψη, γεγονός που δικαιολογεί και το όνομα "ελλειψοειδές". Στην περίπτωση που ένα από τα επίπεδα συμμετρίας τέμνει την επιφάνεια κατά κύκλο, τότε η επιφάνεια λέγεται ελλειψοειδές εκ περιστροφής, δηλαδή προκύπτει από την περιστροφή μιας έλλειψης γύρω από άξονα. Ο άξονας περιστροφής του ελλειψοειδούς θα είναι ευθεία κάθετη στο επίπεδο του κύκλου και θα διέρχεται από το κέντρο του. Όταν και τα τρία επίπεδα συμμετρίας τέμνουν το ελλειψοειδές κατά κύκλους, τότε το ελλειψοειδές είναι η σφαίρα.

Το ελλειψοειδές εκ περιστροφής είναι το σχήμα της Γης, με άξονα περιστροφής τον άξονα Βορρά-Νότου και μέγιστο κύκλο τον Ισημερινό.


Το κτίριο "αβγό του δεινοσαύρου
Το κτίριο "αβγό του δεινοσαύρου", σχεδιασμένο από τον αρχιτέκτονα Kisho Kurokawa αποτελεί μέρος του Μουσείου Δεινοσαύρων στο Fukui της Ιαπωνίας. 

Το κτίριο "αβγό του δεινοσαύρου
Το "αβγό του δεινοσαύρου" έχει σχήμα ελλειψοειδούς και το όνομα που του δόθηκε είναι απόλυτα εύστοχο!

ο "Fuefukigawa Fruits Park Museum" στην Ιαπωνία, σχεδιάστηκε από τους αρχιτέκτονες Itsuko Hasegawa και Kenchiku Keikaku Kobo
Το "Fuefukigawa Fruits Park Museum" στην Ιαπωνία, σχεδιάστηκε από τους αρχιτέκτονες Itsuko Hasegawa και Kenchiku Keikaku Kobo και χτίστηκε το 1995.


.*.~.*.~.*.~.*.~.*.~.*

"Τα μοτίβα των μαθηματικών, όπως των ζωγράφων ή των ποιητών, πρέπει να είναι όμορφα. Οι ιδέες, όπως τα χρώματα και οι λέξεις, πρέπει να συνδέονται μεταξύ τους με έναν αρμονικό τρόπο".
G.H. Hardy

.*.~.*.~.*.~.*.~.*.~.*


Πηγές:
  • Θ. Κουφογιώργος, Μαθήματα Αναλυτικής Γεωμετρίας, Τυπογραφείο Πανεπιστημίου Ιωαννίνων, 2004
  • E.H. Gombrich, Το Χρονικό της Τέχνης, Μορφωτικό Ίδρυμα Εθνικής Τραπέζης, 1995
  • Wassily Kandinsky, Σημείο-Γραμμή-Επίπεδο, Εκδόσεις Δωδώνη, 2013
  • Wassily Kandinsky, Για το πνευματικό στην Τέχνη, Εκδόσεις Νεφέλη, 1981
  • H.L.C Jaffe, Η ζωγραφική στον 20ό αιώνα, Εκδόσεις Νεφέλη, 1984
  • ALOSS: Fuefukigawa Fruits Park Museum
  • Wikipedia: Ellipsoid
  • Wolfram Mathworld: Ellipsoid
  • World Architecture

Σάββατο 2 Μαΐου 2020

Τα Μαθηματικά στην Τέχνη: Τόρος και τοροειδή πολύεδρα


ΤΟΡΟΣ

Τα βιβλία γράφουν...

Τόρος είναι η επιφάνεια που παράγεται από την περιστροφή ενός κύκλου γύρω από έναν άξονα συνεπίπεδο με τον κύκλο.

Αντίστοιχα, στερεός τόρος είναι το στερεό που παράγεται από την περιστροφή ενός κυκλικού δίσκου γύρω από έναν άξονα συνεπίπεδο με τον κυκλικό δίσκο.

π.χ. Ένα φουσκωτό σωσίβιο είναι τόρος, ενώ ένα ντόνατ είναι στερεός τόρος.

Δεν ήταν λίγοι οι καλλιτέχνες που εμπνεύστηκαν και από τον τόρο...



Σελίδα από το βιβλίο του Johannes Lencker "Perspectiva Literaria" ("Λογοτεχνική Προοπτική", Νυρεμβέργη, 1567) 

Wayne Ferrebee (Σύγχρονος ζωγράφος) - "Donut Universe with Centaur and Mummy" (2010)

Wayne Ferrebee (Σύγχρονος ζωγράφος) - "Torus with Spearman, Bagpipes and Barnacle" (2011)

Seth Bareiss (γεν. 1964) - "Torus, Fish, Hawks and Horses" (2007)

Don Barrett (Σύγχρονος γραφίστας) - "Torus"

Marta Banaszak (γεν. 1975) - "Kamasutra Torus Black" (2014)

Marta Banaszak (γεν. 1975) -
"Kamasutra Torus Black" (2014)

Amer Kobaslija (Σύγχρονος καλλιτέχνης) - "Lowe's Tubes, Ichetucknee" (2018)

Terry Romero Paul (Σύγχρονη ζωγράφος) - "Penny Lane"

DAN (Κοσμολόγος και ζωγράφος, γεν. 1968) - "Double Torus Universe" (2010)
Σύμφωνα με πολλούς μελετητές, το σύμπαν μας έχει σχήμα τόρου. Δεν έχει λοιπόν αρχή και τέλος, υπακούοντας στην Αρχή Διατήρησης της Ενέργειας.


Ο τόρος εισάγει μια νέα κατηγορία επιφανειών, αυτών που έχουν "τρύπα". Το πλήθος των τρυπών της επιφάνειας ονομάζεται γένος της επιφάνειας. Από τοπολογική άποψη, οι επιφάνειες του ίδιου γένους θεωρούνται ομοιομορφικοί, δηλαδή "ίδιοι".




ΤΟΡΟΕΙΔΗ ΠΟΛΥΕΔΡΑ

Τα βιβλία γράφουν...

Τα πολύεδρα με τοπολογικό τύπο τόρου λέγονται τοροειδή πολύεδρα και έχουν χαρακτηριστική Euler χ = Κ - Α + Ε = 0.

Leonardo da Vinci (1452 - 1519) - Σχέδιο του Mazzocchio (αρχές 
16ου αιώνα)


Paolo Uccello (1397 - 1475) - Σχέδιο του Mazzocchio (μέσα
15ου αιώνα)


Paolo Uccello (1397 - 1475) -  Σχέδιο του Mazzocchio (μέσα
15ου αιώνα)

Εκτός από τα πλατωνικά στερεά, ένα άλλο αγαπημένο γεωμετρικό στερεό των Αναγεννησιακών ζωγράφων ήταν ένα τοροειδές πολύεδρο, το οποίο αποκαλούσαν Μαζζόκιο (Mazzocchio). Το συγκεκριμένο στερεό αντιπροσώπευε το υψηλότερο επίπεδο δεξιοτεχνίας στην εξάσκηση της προοπτικής για γεωμετρικά στερεά.


Wentzel Jamnitzer (1508 - 1585) - Σχέδιο του Mazzocchio (μέσα
16ου αιώνα)


Peter Halt - Σχέδιο του Mazzocchio (αρχές 17ου αιώνα)

Αναγεννησιακό ξυλόγλυπτο (Intarsia), έργο του Fra Giovanni da Verona (1457 - 1525). Μοναστήρι του Monte Olivetto, κοντά στη Siena (περ. 1503 - 1506). Απεικονίζει μια 72-εδρη σφαίρα (σφαίρα του Κάμπανου) και ένα τοροειδές πολύεδρο (Mazzocchio)


Mimmo Paladino (γεν. 1948) - Γλυπτό στο Μουσείο Βωμός της Ειρήνης, Ρώμη



Πηγές:

Κυριακή 5 Απριλίου 2020

Τα Μαθηματικά στην Τέχνη: Σφαίρα και σφαιρικά πολύεδρα


ΣΦΑΙΡΑ

Τα βιβλία γράφουν...

Σφαίρα είναι το σχήμα που παράγεται από την περιστροφή ενός κύκλου (Ο, ρ) με άξονα περιστροφής μια διάμετρό του.


Τα βιβλία επίσης γράφουν...

Σφαίρα είναι το σύνολο των σημείων Μ του χώρου που απέχουν από ένα σταθερό σημείο Ο σταθερή απόσταση ρ, δηλαδή ισχύει:
ΟΜ = ρ.

Rene Magritte (1898 - 1967)

Rene Magritte (1898 - 1967) - "L'ombre Monumentale" (1932)

Ivan Kliun (1873- 1943) - "Σφαιρική μη αντικειμενική σύνθεση" (1922-25)

A.J. Edwards (Σύγχρονος καλλιτέχνης) - "Game Room"

Barbara Fox (Σύγχρονη ζωγράφος) - "Billiard Balls - Still Life"

Georgi Lechev (Σύγχρονος καλλιτέχνης) - "Dialog Between White and Blue" (2011)

Allen Donnelly (Σύγχρονος καλλιτέχνης και συγγραφέας) - "On the beach"

James Pikerton (σύγχρονος ζωγράφος) - "Shadow Spheres" (2015)

James Pikerton (σύγχρονος ζωγράφος) - "Sphere Orb"

James Pikerton (σύγχρονος ζωγράφος) - "Red Sphere"

Katie Morris (Σύγχρονη ζωγράφος και καθηγήτρια καλλιτεχνικών) - "Sports Spheres"
Μέσα από τις καλλιτεχνικές δραστηριότητες στη σχολική τάξη, προσπαθεί να διδάξει στους μαθητές της τα γεωμετρικά σχήματα και τα γεωμετρικά στερεά. 

Katie Morris (Σύγχρονη ζωγράφος και καθηγήτρια καλλιτεχνικών) - "Sports Spheres"

Katie Morris (Σύγχρονη ζωγράφος και καθηγήτρια καλλιτεχνικών) - "Sports Spheres"

Katie Morris (Σύγχρονη ζωγράφος και καθηγήτρια καλλιτεχνικών) - "Sports Spheres"

Katie Morris (Σύγχρονη ζωγράφος και καθηγήτρια καλλιτεχνικών) - "Sports Spheres"

Katie Morris (Σύγχρονη ζωγράφος και καθηγήτρια καλλιτεχνικών) - "Sports Spheres"

Russell Kightley (Σύγχρονος καλλιτέχνης) - "Sphere Equations"



Τι γίνεται όταν επιτρέψουμε στα πολύεδρα να έχουν καμπυλωτές ακμές και έδρες;


ΣΦΑΙΡΙΚΑ ΠΟΛΥΕΔΡΑ

Τα βιβλία γράφουν...

Η επιφάνεια της σφαίρας μπορεί να χωριστεί με ευθύγραμμα τμήματα σε οριοθετούμενες περιοχές, για να σχηματίσει ένα σφαιρικό πολύεδρο. Μεγάλο μέρος της θεωρίας των συμμετρικών πολυέδρων προκύπτει ευκολότερα με αυτόν τον τρόπο. Τα σφαιρικά πολύεδρα έχουν μια μακρά και αξιοσέβαστη ιστορία. Ο Poinsot, χρησιμοποιώντας σφαιρικά πολύεδρα, ανακάλυψε τα τέσσερα κανονικά αστεροειδή πολύεδρα. Τα πρώτα πολύεδρα που κατασκεύασε ο άνθρωπος ήταν σφαιρικά πολύεδρα σκαλισμένα σε πέτρα.


Paolo Uccello (1397 - 1475) - "Γεωμετρική Σφαίρα"


Martino da Udine (1470 - 1548) - Σπουδή στη Γεωμετρία και στην προοπτική



.*.〰.*.〰.*.〰.*.〰.*.〰.*.〰.*.

"Μεταχειρίσου τη φύση μέσω του κυλίνδρου, της σφαίρας και του κώνου, όλα τοποθετημένα με προοπτική, ώστε κάθε πλευρά ενός αντικειμένου ή ενός επιπέδου να κατευθύνεται προς ένα κεντρικό σημείο. Αν μάθουμε να βασίζουμε τη ζωγραφική μας πάνω σ' αυτά τα απλά σχήματα, θα μπορέσουμε να πετύχουμε τα πάντα".
Paul Cezanne (1839 - 1906)

.*.〰.*.〰.*.〰.*.〰.*.〰.*.〰.*.


Πηγές: