Παρασκευή 20 Δεκεμβρίου 2024

Γρίφος: Ο συνδυασμός που συμφέρει


Γρίφος: Ο συνδυασμός που συμφέρει


Στην ψαραγορά της πόλης μου, τα ψάρια προσφέρονται σε δύο μεγέθη: μεγάλα και μικρά. Σήμερα μπορείτε να αγοράσετε τρία μεγάλα ψάρια και ενα μικρό με τα ίδια χρήματα που θα δίνατε χθες για να αγοράσετε πέντε μεγάλα. Από την άλλη πλευρά, δύο μεγάλα ψάρια και ένα μικρό κοστίζουν σήμερα όσο κόστιζαν χθες τρία μεγάλα και ένα μικρό. Ποια είναι πιο οικονομικά, ένα μεγάλο και δύο μικρά ψάρια σήμερα ή πέντε μικρά ψάρια χθες;


Δευτέρα 16 Δεκεμβρίου 2024

"Η απολογία ενός μαθηματικού"


Ένας εκκεντρικός κορυφαίος μαθηματικός, κλεισμένος διά βίου στον περίγυρο του Cambridge, με τη δύση της καριέρας του στα 1940, αισθάνεται την ανάγκη να απολογηθεί. Πρόκειται για τον Godfrey Harold Hardy (1877-1947), γνωστό για τα επιτεύγματά του στη θεωρία αριθμών και στη μαθηματική ανάλυση. Ένας φυσικός, ο C.P. Snow, φίλος του πρώτου, προσπαθεί να φωτίσει την ιδιόρρυθμη προσωπικότητα του απολογούμενου. Χωρίς ίχνος σεμνοτυφίας, ο καθηγητής G.H. Hardy υπερασπίζεται με πάθος αλλά χωρίς φανατισμό τη μαθηματική δημιουργία. Το δοκίμιο «Η απολογία ενός μαθηματικού» είναι μία από τις πιο προσιτές αναλύσεις γύρω από τον τρόπο σκέψης ενός μαθηματικού. Αν και εκκεντρικό συχνά στις απόψεις του, με διάθεση κάποτε μελαγχολική και κάποτε δηκτική, μυεί μυημένους και αμύητους, φίλους και μη της επιστήμης, στον παράξενο κόσμο των καθαρών μαθηματικών και στις αξίες και αντιλήψεις μιας εποχής που φαίνεται ότι σβήνει. H ελληνική μετάφραση συνοδεύεται από εκτενή σχόλια που εισάγουν τον αναγνώστη στον τρόπο ζωής και τις συνήθειες του κοινωνικού και επιστημονικού περίγυρου της Aγγλίας του μεσοπολέμου.


Η απολογία ενός μαθηματικού
Το βιβλίο από τις Πανεπιστημιακές Εκδόσεις Κρήτης


«Ο μαθηματικός δε χρειάζεται σοβαρά να φοβάται ότι το μέλλον θα τον αδικήσει. Η αθανασία είναι συχνά γελοία ή βάρβαρη: λίγοι από εμάς θα διάλεγαν να είναι ο Ωγ ή ο Ανανίας ή ο Γαλλίων. Ακόμη και στα Μαθηματικά, η ιστορία παίζει καμιά φορά περίεργες φάρσες. Ο Rolle ποζάρει στα βιβλία του Στοιχειώδους Λογισμού σαν να ήταν ένας μαθηματικός του διαμετρήματος του Νεύτωνα. Ο Farey είναι αθάνατος επειδή απέτυχε να κατανοήσει ένα θεώρημα που ο Haros είχε ήδη αποδείξει πριν από 14 χρόνια. Τα ονόματα πέντε άξιων Νορβηγών βρίσκονται ακόμη στον Βίο του Abel, μόνο εξ αιτίας μιας ενέργειας ενσυνείδητης βλακείας που συνετελέσθη, από τυπολατρεία, εις βάρος του μεγαλύτερου άνδρα της χώρας τους. Αλλά, συνολικά, η ιστορία της επιστήμης είναι δίκαιη, και αυτό ισχύει ιδιαίτερα στα Μαθηματικά. Κανένα άλλο αντικείμενο μελέτης δεν έχει τόσο καθαρά οριοθετημένα ή ομόφωνα αποδεκτά υψηλά κριτήρια, και οι μαθηματικοί που θυμόμαστε είναι σχεδόν πάντα αυτοί που το αξίζουν. Η μαθηματική δόξα, αν μπορούσε να εξαγοραστεί, θα ήταν μια από τις πιο υγιείς και σταθερές επενδύσεις».

(G.H.Hardy - «Η απολογία ενός μαθηματικού»)

 


G.H. Hardy

📖Διαβάστε εδώ περισσότερες όμορφες ρήσεις του Hardy.


Τρίτη 3 Δεκεμβρίου 2024

Γρίφοι: Νομίσματα σε κουτιά

 

Γρίφος #1

2 νομίσματα σε 3 κουτιά

Έχουμε 3 κουτιά, καθένα από τα οποία περιέχει 2 νομίσματα: Ένα κουτί περιέχει δύο χρυσά, ένα κουτί περιέχει δύο ασημένια και το τρίτο ένα χρυσό και ένα ασημένιο.

Επιλέξαμε ένα κουτί στην τύχη. Χωρίς να κοιτάξουμε μέσα, βγάλαμε έξω το ένα νόμισμα και αυτό ήταν ασημένιο. Αν βγάλουμε έξω και το δεύτερο νόμισμα, ποια είναι η πιθανότητα να είναι και αυτό ασημένιο;



Γρίφος #2

3 νομίσματα σε 4 κουτιά

Έχουμε 4 κουτιά, καθένα από τα οποία περιέχει 3 νομίσματα: Ένα κουτί περιέχει τρία χρυσά, ένα κουτί περιέχει τρία ασημένια, ένα κουτί περιέχει δύο χρυσά και ένα ασημένιο και το τελευταίο ένα χρυσό και δύο ασημένια.

Επιλέξαμε ένα κουτί στην τύχη. Χωρίς να κοιτάξουμε μέσα, βγάλαμε έξω το ένα νόμισμα και αυτό ήταν ασημένιο. Αν βγάλουμε έξω και ένα δεύτερο νόμισμα από το ίδιο κουτί, ποια είναι η πιθανότητα να είναι και αυτό ασημένιο;



Γρίφος #3

3 νομίσματα σε 4 κουτιά

Έχουμε 4 κουτιά, καθένα από τα οποία περιέχει 3 νομίσματα: Ένα κουτί περιέχει τρία χρυσά, ένα κουτί περιέχει τρία ασημένια, ένα κουτί περιέχει δύο χρυσά και ένα ασημένιο και το τελευταίο ένα χρυσό και δύο ασημένια.

Επιλέξαμε ένα κουτί στην τύχη. Χωρίς να κοιτάξουμε μέσα, βγάλαμε έξω δύο νομίσματα και ήταν και τα δύο ασημένια. Αν βγάλουμε έξω και το τρίτο νόμισμα από το κουτί, ποια είναι η πιθανότητα να είναι και αυτό ασημένιο;


Τετάρτη 27 Νοεμβρίου 2024

Χαρούμενοι αριθμοί!


"Χαρούμενος αριθμός" ονομάζεται ένας θετικός ακέραιος, στον οποίο το άθροισμα των τετραγώνων των ψηφίων του, όταν υπολογίζεται επαναληπτικά, τελικά ισούται με 1.

Πιο συγκεκριμένα, ένας χαρούμενος αριθμός ορίζεται ως εξής: Ξεκινάμε από έναν θετικό ακέραιο αριθμό α και παίρνουμε τα ψηφία του. Υψώνουμε το κάθε ψηφίο στο τετράγωνο και έπειτα τα προσθέτουμε. Για το αποτέλεσμα που βρήκαμε επαναλαμβάνουμε την ίδια διαδικασία. Αν τελικά καταλήξουμε στο 1, τότε ο α είναι χαρούμενος αριθμός.

Αν το άθροισμα των τετραγώνων των ψηφίων του δεν φτάνει ποτέ το 1, τότε ο αριθμός ονομάζεται "δυστυχισμένος αριθμός". 

Για παράδειγμα, το 19 είναι χαρούμενος αριθμός, αφού:  


19


Το 4 είναι δυστυχισμένος αριθμός, αφού η παραπάνω διαδικασία καταλήγει σε έναν κύκλο επαναλαμβανόμενων αριθμών:

4, 16, 37, 58, 89, 145, 42, 20, 4, ...


Οι πρώτοι χαρούμενοι αριθμοί είναι: 

1, 7, 10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100, 103, 109, 129, 130, 133, 139, 167, 176, 188, 190, 192, 193, 203, 208, 219, 226, 230, 236, 239, 262, 263, 280, 291, 293, 301, 302, 310, 313, 319, 320, 326, 329, 331, 338, 356, 362, 365, 367, 368, 376, 379, 383, 386, 391, 392, 397, 404, 409, 440, 446, 464, 469, 478, 487, 490, 496... 


Ένας πρώτος αριθμός που είναι χαρούμενος αριθμός ονομάζεται χαρούμενος πρώτος αριθμός. Οι πρώτοι χαρούμενοι πρώτοι αριθμοί είναι οι:

7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487 …


Όλοι οι πρώτοι αριθμοί της μορφής \(10^ν +3\) ή \(10^ν +9\), \(ν=1,2,...\) είναι χαρούμενοι πρώτοι αριθμοί.

👉Δείτε εδώ μια οπτικοποίηση των χαρούμενων και των δυστυχισμένων αριθμών, με τη χρήση κώδικα.


Οπτικοποίηση



Πηγές: 

LinkedIn | Fermat´s Library

Happy Numbers Visualization


Πέμπτη 21 Νοεμβρίου 2024

Ο Μάγος του Οζ, το Σκιάχτρο και ένα μαθηματικό λάθος


🎬Στην ταινία του 1939, "Ο Μάγος του Οζ", ένα συμπαθέστατο σκιάχτρο πηγαίνει να συναντήσει τον πανίσχυρο μάγο του Οζ για να του ζητήσει να του δώσει εγκέφαλο. Μετά από ένα μακρινό και επικίνδυνο ταξίδι, ο μάγος, ο οποίος -μεταξύ μας- δεν ήταν αληθινός μάγος, αλλά βάσιζε τη δράση του στο φαινόμενο placebo, απονέμει στο Σκιάχτρο τον τιμητικό τίτλο Δ.Σ., δηλαδή Δόκτωρ της κριτικής Σκέψης. Μόλις πήρε το δίπλωμά του, το Σκιάχτρο, με ανανεωμένη εμπιστοσύνη στις ικανότητές του, εντυπωσίασε τους φίλους του διατυπώνοντας το εξής... "θεώρημα":


"Το άθροισμα των τετραγωνικών ριζών οποιωνδήποτε δύο πλευρών ισοσκελούς τριγώνου ισούται με την τετραγωνική ρίζα της τρίτης πλευράς".




❓Θα μπορούσε, άραγε, να ισχύει ποτέ αυτό; Ας το δούμε αναλυτικά.

Επειδή ένα ισοσκελές τρίγωνο έχει δύο ίσες πλευρές, αυτό που είπε το Σκιάχτρο θα μπορούσε να περιγραφεί με τη μαθηματική σχέση
\(\sqrt{\alpha}+\sqrt{\alpha}=\sqrt{\gamma}\)
ή
\(2\sqrt{\alpha}=\sqrt{\gamma}\)
ή
\(\gamma=4\alpha\).
Όμως, με βάση την τριγωνική ανισότητα, είναι αδύνατο να υπάρχει τρίγωνο με μήκη πλευρών \\(\alpha, \alpha\\) και \\(4\alpha\\). Ελέγξτε το μόνοι σας, προσπαθώντας να σχεδιάσετε ένα τέτοιο τρίγωνο.

Από την άλλη, μπορεί το Σκιάχτρο να εννοούσε
\(\sqrt{\alpha}+\sqrt{\gamma}=\sqrt{\gamma}\),
το οποίο συνεπάγεται ότι \(\alpha=0\),
που δεν μπορεί να ισχύει για πλευρά τριγώνου.


🌐Προφανώς, ο συγγραφέας του κινηματογραφικού σεναρίου ηθελημένα έβαλε το Σκιάχτρο να διατυπώνει μια εντυπωσιακή σχέση που από μαθηματικής άποψης δεν ισχύει. Πάντως, σύμφωνα με τον Clifford A. Pickover, συγγραφέα του βιβλίου γρίφων "Τα Μαθηματικά του Οζ", η μαθηματική σχέση του Σκιάχτρου θα μπορούσε να είναι σωστή σε κάποιο είδος καμπυλωμένου χώρου, όπου η ευθεία γραμμή δεν είναι ο συντομότερος "δρόμος" ανάμεσα σε δύο σημεία και πιθανόν στη Χώρα του Οζ να ισχύει κάποια παράξενη, μη Ευκλείδεια γεωμετρία...

Δευτέρα 18 Νοεμβρίου 2024

Ένας... εντυπωσιακός πρώτος


Ο αριθμός S παρακάτω, είναι το άθροισμα των δυνάμεων των πρώτων αριθμών από το 2 μέχρι το 89, με εκθέτη τον εαυτό τους. 


2^2+3^3+5^5+...+89^{89}

Ο S είναι επίσης πρώτος αριθμός. Μάλιστα, είναι ο μεγαλύτερος πρώτος αριθμός που γνωρίζουμε μέχρι σήμερα ότι μπορεί να γραφεί σε αυτή τη μορφή!


Τρίτη 12 Νοεμβρίου 2024

Υπάρχει σε όλα λύση; Ταξίδι στον Κόσμο των Αρχαίων Ελληνικών Μαθηματικών...Ξανά και το 2024...

 

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος»!

 

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».

Διαδραστικές και ψηφιακές εφαρμογές, εκθέματα Εικονικής Πραγματικότητας, κείμενα, εντυπωσιακές προβολές και κατασκευές συνθέτουν μία μοναδική έκθεση, με την αξιοποίηση της σύγχρονης τεχνολογίας.

 

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».
Τα πλατωνικά στερεά

Πρόκειται για μια εντυπωσιακή έκθεση στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος» που αφορά την ιστορία των μαθηματικών και την ανάπτυξη της μαθηματικής σκέψης στον αρχαίο ελληνικό κόσμο, την επιρροή τους σε άλλες επιστήμες και τέχνες, όπως την αστρονομία, τη μαθηματική γεωγραφία και τη μουσική. Αναφέρεται στα πιο σημαντικά «επεισόδια» και πρόσωπα της ιστορίας των ελληνικών μαθηματικών, όπως ο Θαλής, ο Ευκλείδης και ο Πυθαγόρας.

  

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».
Ο διπλασιασμός του τετραγώνου



Μέσα από μια σειρά διαδραστικών δραστηριοτήτων, οι επισκέπτες έρχονται σε επαφή με τα αριθμητικά συστήματα των Αιγυπτίων και των Βαβυλωνίων. Εξοικειώνονται με το θεώρημα του Θαλή, τους τρίγωνους και τετράγωνους αριθμούς των Πυθαγορείων, το Πυθαγόρειο θεώρημα και την έννοια της μαθηματικής απόδειξης. Χάρη στον εκπαιδευτικό και ψυχαγωγικό χαρακτήρα της έκθεσης, οι επισκέπτες ανακαλύπτουν πώς τα μαθηματικά μπορούν να γίνουν ενδιαφέροντα, ευχάριστα και κατανοητά.

 

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».
Οι κωνικές τομές

Στην έκθεση θα…

…γράψουμε αριθμούς με βάση τα ιερογλυφικά σύμβολα των αρχαίων Αιγυπτίων και τη σφηνοειδή γραφή των Βαβυλώνιων.

…προσπαθήσουμε να μοιράσουμε ακριβώς 6 καρβέλια ψωμί σε 10 άνδρες και θα γνωρίσουμε τον τρόπο με τον οποίο οι αρχαίοι Αιγύπτιοι το κατάφεραν, όπως παρουσιάζεται στον πάπυρο Rhind, το εκτενέστερο και ένα από τα πιο γνωστά κείμενα των αιγυπτιακών μαθηματικών.

…αναζητήσουμε γύρω μας σχήματα, όπως έκανε ο Θαλής και οι Ίωνες φιλόσοφοι και θα τα σχηματίσουμε στην άμμο με ραβδί.

…μάθουμε πώς υπολόγισε ο Θαλής το ύψος της πυραμίδας του Χέοπα, μόνο με ένα σχοινί και με την παρατηρητικότητά του...

…γνωρίσουμε τον Πυθαγόρα, τον άνθρωπο που έβλεπε παντού αριθμούς και θα πειραματιστούμε με τη μουσική κλίμακα στο μονόχορδό του.

…αναρωτηθούμε για το εάν υπάρχει τελικά σε όλα λύση, με κανόνα και διαβήτη και θα γνωρίσουμε τα τρία άλυτα προβλήματα της αρχαιότητας.

…μάθουμε πώς το λουτρό ενός πανεπιστήμονα μαθηματικού της αρχαιότητας έγινε αφορμή για έναν θεμελιώδη νόμο της υδροστατικής και πώς έγινε διάσημη η λέξη «Εύρηκα».

…δούμε πώς ο Ερατοσθένης κατάφερε με ελάχιστα μέσα να υπολογίσει με μεγάλη ακρίβεια την περιφέρεια της Γης.

…πειραματιστούμε με τον άβακα, το εργαλείο με το οποίο έκαναν υπολογισμούς και πράξεις οι αρχαίοι.

…αναρωτηθούμε από πού αντλούμε τις γνώσεις μας για τα αρχαία ελληνικά μαθηματικά.

…λύσουμε ένα πρόβλημα πρακτικής αριθμητικής του 15ου αιώνα, στο οποίο θα βοηθήσουμε μια κυρία να βρει πόσα ήταν τα αυγά που κρατούσε πριν σπάσουν.


Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».
Επιλύοντας ένα πρόβλημα πρακτικής αριθμητικής του 15ου αιώνα

  

Ψηφιακές εφαρμογές συνυπάρχουν με φυσικά διαδραστικά εκθέματα, όπως κατασκευές και προσφέρουν στον επισκέπτη μια μοναδική «ζωντανή» περιήγηση στον κόσμο των αρχαίων ελληνικών μαθηματικών. Τα παιδιά μαθαίνουν παίζοντας και οι ενήλικοι μαγεύονται από τη γοητεία της μαθηματικής επιστήμης.

 

Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».

Για πρώτη φορά, στην έκθεση θα βιώσετε μοναδικές εμπειρίες Εικονικής Πραγματικότητας χάρη στα προηγμένα προγράμματα του «Ελληνικού Κόσμου», της «Κιβωτού», το πρώτο σύστημα εικονικής πραγματικότητας στην Ελλάδα ή του «Εικονικού Κινηματογράφου».


Ετοιμαστείτε να ανακαλύψετε τα μυστικά της μαθηματικής σκέψης και να μάθετε την ιστορία των αρχαίων ελληνικών μαθηματικών στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος».

Η έκθεση αρχικά είχε παρουσιαστεί στο Κέντρο Πολιτισμού "Ελληνικός Κόσμος" από το 2003 μέχρι το 2013. Έπειτα φιλοξενήθηκε στο χώρο της Δ.Ε.Θ. από το Σεπτέμβριο του 2022 μέχρι τον Μάρτιο του 2023 (την είχαμε παρουσιάσει τότε στο "εις το άπειρον" εδώ). Η νέα εμπλουτισμένη έκθεση, την οποία έχει επιμεληθεί η ομάδα του Ιδρύματος Μείζονος Ελληνισμού, αποτελεί συνέχεια της έκθεσης που είχε πραγματοποιηθεί με μεγάλη επιτυχία στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος» και είχε συγκροτηθεί με τη φροντίδα των επιστημόνων του ΙΜΕ, καθώς και με την ευγενική συμβολή της Ελληνικής Μαθηματικής Εταιρείας, ενώ η επιστημονική επιμέλεια της έκθεσης έφερε την υπογραφή του ειδικού της Ιστορίας των Μαθηματικών, καθηγητή Γιάννη Χριστιανίδη. Τη μουσειολογική μελέτη είχαν εκπονήσει η Αλεξάνδρα Νικηφορίδου, η Ανδρομάχη Γκαζή και η Θεανώ Μουσούρη, ενώ τη μουσειογραφική μελέτη είχε επιμεληθεί ο Σταμάτης Ζάννος.

 

🗓Έναρξη έκθεσης: 16 Νοεμβρίου 2024

📍Τοποθεσία: Κέντρο Πολιτισμού "Ελληνικός Κόσμος", Πειραιώς 254, Ταύρος

💻Περισσότερες πληροφορίες και εισιτήρια: Ελληνικός Κόσμος




Τρίτη 5 Νοεμβρίου 2024

Giveaway! Κερδίστε 6 βιβλία Μαθηματικών Δημοτικού από τις εκδόσεις Μπάρλας!


Το 3ο μας μαθηματικό giveaway είναι εδώ! Το blog «εις το άπειρον», σε συνεργασία με τις εκδόσεις Μπάρλας, κληρώνει έξι βιβλία Μαθηματικών, ένα για κάθε τάξη του Δημοτικού!  

 

ℹ️Ο μαθηματικός και συγγραφέας Αναστάσιος Μπάρλας, μαζί με τη συγγραφική του ομάδα, δραστηριοποιείται στην έκδοση βιβλίων Μαθηματικών από την Α΄ Δημοτικού μέχρι και τη Γ΄ Λυκείου. Τα βιβλία των εκδόσεων Μπάρλας, γραμμένα πάντα σε αντιστοιχία με τη σειρά των κεφαλαίων των σχολικών βιβλίων, είναι πολύτιμοι βοηθοί για κάθε μαθητή, αλλά και τους γονείς ή κηδεμόνες του και για κάθε εκπαιδευτικό.


Giveaway από το blog "εις το άπειρον", σε συνεργασία με τις εκδόσεις Μπάρλας!

📚Έξι τυχεροί/ές αναγνώστες του «εις το άπειρον» θα κερδίσουν από ένα βιβλίο Μαθηματικών Δημοτικού από τις εκδόσεις Μπάρλας! Δείτε παρακάτω τα έξι δώρα που κληρώνουμε:

 

🎁Δώρο #1: Μαθηματικά Α΄ Δημοτικού

 

Μαθηματικά Α΄ Δημοτικού

🎁Δώρο #2: Μαθηματικά Β΄ Δημοτικού

 

Μαθηματικά Β΄ Δημοτικού

🎁Δώρο #3: Μαθηματικά Γ΄ Δημοτικού

 

Μαθηματικά Γ΄ Δημοτικού

🎁Δώρο #4: Μαθηματικά Δ΄ Δημοτικού

 

Μαθηματικά Δ΄ Δημοτικού

🎁Δώρο #5: Μαθηματικά Ε΄ Δημοτικού

 

Μαθηματικά Ε΄ Δημοτικού

🎁Δώρο #6: Μαθηματικά Στ΄ Δημοτικού

Μαθηματικά Στ΄ Δημοτικού

 

Για να πάρετε μέρος στην κλήρωση, πρέπει και αρκεί:

1.    Να είστε ακόλουθοι του blog «εις το άπειρον» (η εγγραφή γίνεται με χρήση gmail πατώντας πάνω στο μπλε κουμπάκι)

Αναγνώστες του blog

2.    Να αφήσετε ένα σχόλιο σ' αυτή την ανάρτηση, δηλώνοντας ότι συμμετέχετε στο giveaway και γράφοντας:

·       το e-mail σας και

·  για ποιο ή ποια βιβλία επιθυμείτε να μπείτε στην κλήρωση (π.χ. «επιθυμώ να μπω στην κλήρωση για το βιβλίο της Γ΄ Δημοτικού» ή «επιθυμώ να μπω στην κλήρωση για τα βιβλία Δ΄, Ε΄, ΣΤ΄ Δημοτικού»).

3.    Προσοχή: αν στο σχόλιο φαίνεστε ως ανώνυμοι, φροντίστε να γράψετε το όνομά σας και ένα e-mail  (δυστυχώς ανώνυμα σχόλια δεν μπορούν να ληφθούν υπόψη).

 

🎲Ο διαγωνισμός λήγει το Σάββατο 16 Νοεμβρίου 2024 στις 23:59. Την Κυριακή 17 Νοεμβρίου 2024 θα ανακοινωθούν στην παρούσα ανάρτηση οι 6 τυχεροί/τυχερές που θα αναδείξει η κλήρωση μέσω του random name picker από το commentpicker.com και θα ειδοποιηθούν μέσω e-mail (στο e-mail που θα έχουν δηλώσει)! Τα δώρα θα σταλούν στους νικητές μόλις έχουμε τις διευθύνσεις τους. Αν κάποιος/α δεν επικοινωνήσει εντός μιας εβδομάδας, η κλήρωση θα επαναληφθεί, μόνο για το συγκεκριμένο βιβλίο.

 

Καλή επιτυχία σε όλους!!!


=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

EDIT 17/11/2024 - ΛΗΞΗ ΔΙΑΓΩΝΙΣΜΟΥ ΚΑΙ ΚΛΗΡΩΣΗ!

Σας ευχαριστούμε όλους και όλες όσοι/ες συμμετείχατε στο giveaway μας! Μέσω του random name picker από το commentpicker.com, πραγματοποιήθηκαν 6 κληρώσεις μεταξύ των έγκυρων συμμετοχών, μία για κάθε βιβλίο. Παρακάτω είναι τα ονόματα των 6 τυχερών που κερδίζουν τα 6 βιβλία Μαθηματικών Δημοτικού:

Δώρο #1: Α΄ Δημοτικού


Δώρο #2: Β΄ Δημοτικού

Δώρο #3: Γ΄ Δημοτικού

Δώρο #4: Δ΄ Δημοτικού

Δώρο #5: Ε΄ Δημοτικού

Δώρο #6: Στ΄ Δημοτικού


Συγχαρητήρια σε όλες! Είμαι σίγουρη ότι τα βιβλία που κερδίσατε είναι πολύτιμο εκπαιδευτικό υλικό!