Δευτέρα 14 Φεβρουαρίου 2022

"ΕΜΕΙΣ"

 

I-330

Αγαπητέ μου, είσαι μαθηματικός. Και ακόμη περισσότερο, είσαι φιλόσοφος λόγω των μαθηματικών. Πες μου, λοιπόν, ποιος είναι ο τελευταίος αριθμός;

 

D-503

Ο ποιος; Δεν… δεν καταλαβαίνω. Ποιος τελευταίος αριθμός;

 

I-330

Να, ο έσχατος, το αποκορύφωμα, ο απόλυτα μεγαλύτερος.

 

D-503

Μα, I, αυτό είναι ηλίθιο. Αφού το σύνολο των αριθμών είναι άπειρο, πώς μπορεί να υπάρξει τελευταίος;

 

I-330

Και πώς μπορεί να υπάρξει τελευταία επανάσταση; Δεν υπάρχει. Οι επαναστάσεις είναι άπειρες. Άκου τελευταία! Αυτό είναι για τα παιδιά. Το άπειρο τρομάζει τα παιδιά και τα παιδιά πρέπει να κοιμούνται καλά το βράδυ…


"Εμείς"
"Εμείς", του σοβιετικού Γιεβγκιένι Ζαμιάτιν από τις εκδόσεις Νεφέλη


Στο Μονοκράτος του Ευεργέτη, δεν υπάρχουν άτομα, παρά μόνο αριθμοί. Η ζωή εξελίσσεται με μαθηματική ακρίβεια, σαν καλοζυγισμένη εξίσωση. Τα πρωτόγονα πάθη και ένστικτα έχουν υπερνικηθεί. Ακόμη και η φύση έχει εξοστρακιστεί πέρα από ένα Πράσινο Τείχος. Ένα μόνο σύνορο δεν έχει ακόμη κατακτηθεί: το διάστημα. Με την κατασκευή του διαστημοπλοίου «Ολοκλήρωμα», κι αυτό, μαζί με τους άγνωστους κατοίκους του, θα υποταχθεί στον ευεργετικό ζυγό της λογικής. Ένας αριθμός, ο D-503, αρχιμηχανικός του Ολοκληρώματος, αποφασίζει να καταγράψει τις σκέψεις του τις τελευταίες ημέρες πριν την εκτόξευση, προς όφελος των λιγότερο ανεπτυγμένων κοινωνιών. Όμως, μια τυχαία συνάντηση με την όμορφη Ι-330 οδηγεί σε μια αναπάντεχη ανακάλυψη που φαίνεται να απειλεί ό,τι ο D-503 πιστεύει για τον εαυτό του και το Μονοκράτος: την ανακάλυψη εκείνης της ασθένειας που οι αρχαίοι αποκαλούσαν ψυχή... Μια συναρπαστική περιπέτεια επιστημονικής φαντασίας, ένα λογοτεχνικό αριστούργημα που προέβλεψε με ακρίβεια τη φρίκη των ολοκληρωτικών καθεστώτων, το «Εμείς» του Γιεβγκιένι Ζαμιάτιν είναι το κλασικό δυστοπικό μυθιστόρημα, και συνάμα μια βαθιά συγκινητική ανθρώπινη τραγωδία, μια μελέτη των διαφορετικών μορφών που μπορεί να πάρει η ανθρώπινη αγάπη. Και μολονότι οι ήρωές του είναι ανώνυμοι "Αριθμοί", ο καθένας απ' αυτούς δεν παύει να είναι μια ξεχωριστή οντότητα, πειστικά και συγκινητικά ζωντανή. Είναι, επίσης, μια μελέτη της κοινωνίας που ισχυρίζεται ότι βασίζεται αποκλειστικά στον αμιγή ορθολογισμό -και ως εκ τούτου μετατρέπεται σε θανάσιμη, απάνθρωπη, παράλογη. Παρότι προαναγγέλει ένα μέλλον δυσοίωνο, με το μήνυμα ελπίδας που σιωπηλά περνάει, το «Εμείς» είναι σήμερα, στον 21ο αιώνα, τόσο επίκαιρο όσο ήταν και στις αρχές του 20ού


Τετάρτη 9 Φεβρουαρίου 2022

Όταν ο 8χρονος Terence Tao εντόπιζε τέλειους αριθμούς με χρήση Basic...

 

Αυτή ήταν η πρώτη εργασία που δημοσίευσε το 1983 ο ιδιοφυής μαθηματικός Terence Tao (Μετάλλιο Fields, 2006), σε ηλικία μόλις 8 ετών!


Terence Tao


Στην εργασία αυτή, αναπτύσσει έναν κώδικα σε Basic, ο οποίος εντοπίζει τέλειους αριθμούς.


Τέλειος λέγεται ένας φυσικός αριθμός ν, όταν το άθροισμα των διαιρετών του, εκτός του ν, ισούται με τον αριθμό ν. 


Ο μικρότερος τέλειος αριθμός είναι το 6. Οι διαιρέτες του 6 (εκτός από τον εαυτό του) είναι οι 1, 2, 3.

Το άθροισμα αυτών είναι 1 + 2 + 3 = 6.

Άλλοι τέλειοι αριθμοί είναι οι:

28 = 1 + 2 + 4 + 7 + 14

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248


Ο Ευκλείδης ανακάλυψε ότι οι τέσσερις πρώτοι τέλειοι αριθμοί παράγονται από τον τύπο \(2^{n-1} (2^n -1) \), όπου \(n=2, 3, 5, 7\).


Πράγματι:

Για \(n=2\) είναι: \(2^1(2^2-1) = 6 \)

Για \(n=3\) είναι: \( 2^2(2^3-1) = 28 \)

Για \(n=5\) είναι: \(2^4(2^5-1) = 496\)

Για \(n=7\) είναι: \( 2^6(2^7-1) = 8128\)


Αποδεικνύεται εύκολα ότι αν ο  \(2^n -1 \) είναι πρώτος, τότε και ο  \(n\) είναι πρώτος. (Το αντίστροφο ΔΕΝ ισχύει!)

Παρατηρώντας ότι τα \(n=2, 3, 5, 7\) στον παραπάνω τύπο είναι πρώτοι αριθμοί, ο Ευκλείδης, στο βιβλίο του "Στοιχεία", απέδειξε ότι αν ο \(2^n -1 \) είναι πρώτος, τότε ο αριθμός \(2^{n-1} (2^n -1) \) είναι τέλειος. O Ευκλείδης, λοιπόν, τεκμηρίωσε μια ικανή συνθήκη για να είναι ένας αριθμός τέλειος.  Έτσι, για την εύρεση τέλειων αριθμών αρκεί η εύρεση πρώτων αριθμών της μορφής \(p=2^n-1 \). Δεν ισχυρίστηκε όμως πουθενά ότι αυτή η συνθήκη ήταν επίσης αναγκαία -δηλαδή ότι αν ένας αριθμός είναι τέλειος, τότε θα πρέπει να έχει την παραπάνω μορφή.

Σχεδόν είκοσι αιώνες μετά τον Ευκλείδη, ο Euler απέδειξε ότι ο τύπος  \(2^{n-1} (2^n -1) \) μας δίνει όλους τους άρτιους τέλειους αριθμούς. Δηλαδή ένας άρτιος τέλειος αριθμός έχει τη μορφή \(2^{n-1} (2^n -1) \), όπου ο \(2^n -1\) είναι πρώτος. Το αποτέλεσμα αυτό είναι γνωστό ως το Θεώρημα Ευκλείδη-Euler.


Είναι άγνωστο μέχρι σήμερα αν υπάρχουν περιττοί τέλειοι αριθμοί. Ο υπολογισμός τέλειων αριθμών είναι αρκετά δύσκολος, αν αναλογιστεί κανείς ότι ως το 2016 υπήρχαν 49 γνωστοί τέλειοι αριθμοί.

 

Ο τότε πιτσιρικάς Terence Tao βασίστηκε στο θεώρημα που είχε αποδείξει ο Ευκλείδης και σχεδίασε την εύρεση πρώτων αριθμών της μορφής \(p=2^n-1 \), με σκοπό τη δημιουργία τέλειων αριθμών. Διαβάστε την εργασία του Terence Tao στο Fermat's Library πατώντας εδώ...