Κυριακή 13 Ιουνίου 2021

Το Θεμελιώδες Θεώρημα του Απειροστικού Λογισμού



Τα ολοκληρώματα έχουν κάνει αισθητή την απουσία τους στα χρόνια του covid-19. To 2020 βγήκαν από την εξεταστέα ύλη των Πανελλαδικών, αν και πολλοί τυχεροί μαθητές είχαν προλάβει να τα διδαχθούν. Φέτος όμως βγήκαν πολύ νωρίς εκτός της διδακτέας ύλης. Λίγο πριν αρχίσουν λοιπόν οι φετινές Πανελλαδικές εξετάσεις, θέλω να αποτίσω έναν μικρό φόρο τιμής σε αυτά τα όμορφα μαθηματικά αντικείμενα και να παρουσιάσω το Θεμελιώδες Θεώρημα του Απειροστικού Λογισμού, μέσα από ένα βιβλίο που, όσο και να το μελετήσεις, ποτέ δεν είναι αρκετό!

Το Θεμελιώδες Θεώρημα του Απειροστικού Λογισμού
Πηγή: Απειροστικός Λογισμός II, Σ.Κ. Ντούγιας, Leader Books, 2005

Ο τύπος  είναι γνωστός ως τύπος των Newton-Leibniz και δείχνει τη σχέση που υπάρχει μεταξύ του ορισμένου και του αόριστου ολοκληρώματος. 

Με το παρακάτω πόρισμα, που είναι άμεση συνέπεια του Θεμελιώδους Θεωρήματος του Απειροστικού Λογισμού, παίρνουμε μια μέθοδο υπολογισμού του ορισμένου ολοκληρώματος.

Πηγή: Απειροστικός Λογισμός II, Σ.Κ. Ντούγιας, Leader Books, 2005
Πηγή: Απειροστικός Λογισμός II, Σ.Κ. Ντούγιας, Leader Books, 2005


*~∞~*~∞~*~∞~*

Αφιερωμένο στους μαθητές μου.
Εύχομαι καλή επιτυχία σε όλα τα παιδιά!!!

*~∞~*~∞~*~∞~*

"Amat victoria curam" ("Η νίκη αγαπά την προετοιμασία").
Gaius Victorius Catullus (1ος αιώνας π.Χ.) 

Παρασκευή 11 Ιουνίου 2021

Καλό καλοκαίρι!


Μια αξέχαστη χρονιά έλαβε τέλος! 
Φέτος πίσω απ' τις μάσκες κρύφτηκαν χαμόγελα, κρύφτηκαν γκριμάτσες -τόσες που κάποιες φορές σκέφτηκα "ευτυχώς που φοράω μάσκα...". Φέτος, εκτός από Μαθηματικά, μάθαμε να διαβάζουμε τα μάτια που λένε τόσα πολλά! Μάθαμε να αφουγκραζόμαστε τον τόνο της φωνής των άλλων μέσα από το webex. Μπήκαμε σε καραντίνα, επιστρέψαμε δριμύτεροι με μόνο όπλο το αντισηπτικό και ένα self-test... και πάλι αντισηπτικό και οινόπνευμα... Ζήσαμε και έναν δυνατό σεισμό στο σχολείο, έτσι, για να μη βαριόμαστε! Μαλώσαμε, συζητήσαμε, συμφιλιωθήκαμε.

Όλες οι δυσκολίες σβήνονται με τα "Κυρία θα μας λείψετε" και "Θα σας έχουμε του χρόνου...;" 

Απολαύστε ένα απόσπασμα ελληνικής ταινίας και ταυτιστείτε με τον Ντίνο Ηλιόπουλο! 😂
Καλό καλοκαίρι!






Κυριακή 30 Μαΐου 2021

Πορτρέτα μαθηματικών βασισμένα στο έργο τους

 

Η Ισραηλινή καλλιτέχνιδα και επιστήμων πληροφορικής, Ayelet Sapirstein, δημιουργεί πορτρέτα μαθηματικών με υλικά και τεχνικές που βασίζονται στη μαθηματική εργασία τους και στα θεωρήματά τους, μετατρέποντας την ομορφιά της επίλυσης μαθηματικών προβλημάτων σε τέχνη.


Το παρακάτω πορτρέτο ανήκει στον μαθηματικό Boris Delaunay και δημιουργήθηκε με χρήση του αλγορίθμου τριγωνισμού Delaunay. Αφού επέλεξε σημεία στο επίπεδο, τα οποία εμφανίζονται ως καρφιά στο έργο τέχνης, ο αλγόριθμος χωρίζει το επίπεδο σε τρίγωνα των οποίων οι κορυφές είναι τα αρχικά σημεία. Έτσι παίρνουμε έναν διάλογο μεταξύ της καλλιτέχνιδας που επιλέγει τα σημεία και του αλγορίθμου που επιλέγει πώς να ενώσει αυτά τα σημεία με το υπόλοιπο έργο.


Triangulated Delaunay
Triangulated Delaunay
Καρφιά και σύρμα σε ξύλινη επιφάνεια
2019


Παρακάτω, η Ayelet Sapirstein σε συνεργασία με τoν Eyal Cohen δημιουργούν το πορτρέτο του λογικολόγου και φιλοσόφου John Venn, γνωστού για τη σύλληψη του διαγράμματος Venn που χρησιμοποιείται σε πολλά επιστημονικά πεδία, συμπεριλαμβανομένης της Θεωρίας Συνόλων, της Θεωρίας Πιθανοτήτων, της Μαθηματικής Λογικής, της Στατιστικής και της Πληροφορικής. Οι καλλιτέχνες χρησιμοποίησαν 3 διαφανή φύλλα στα βασικά χρώματα -κόκκινο, κίτρινο, μπλε- τοποθετημένα το ένα πάνω στο άλλο. Τα χαρακτηριστικά του προσώπου δημιουργήθηκαν συνδυάζοντας 2 ή 3 χρώματα, όπως ακριβώς συμβαίνει με την αναπαράσταση της τομής συνόλων σε ένα διάγραμμα Venn.


Venn Diagram
Venn Diagram
Χρωματιστό διαφανές ακρυλικό φύλλο, γυαλί
2019


Δευτέρα 24 Μαΐου 2021

Γρίφος: Φυσική τριάδα

 


Κάποιος υποστηρίζει ότι γνωρίζει τρεις φυσικούς αριθμούς x, y και z
που ικανοποιούν την εξίσωση
28x + 30y + 31z = 365.
Έχει δίκιο;;;


Πηγή γρίφου:

ΜΑΘΗΜΑΤΙΚΟΙ ΓΡΙΦΟΙ 1 - 150 προβλήματα από τη στήλη "Σπαζοκεφαλιές" του περιοδικού Quantum, εκδόσεις "Κάτοπτρο", 1999

Δευτέρα 26 Απριλίου 2021

Το 1º μας μαθηματικό GIVEAWAY!


Έφτασε η ώρα για το πρώτο επίσημο giveaway, που συνδιοργανώνεται από το blog "eis to apeiron" και τη μαθηματικό και συγγραφέα Κωνσταντίνα Πάνου! Ένας τυχερός/τυχερή μπορεί τώρα να κερδίσει ένα αντίτυπο του βιβλίου "ΜΑΘΗΜΑΤΙΚΑ ΣΤΑΥΡΟΛΕΞΑ ΓΕΩΜΕΤΡΙΑΣ" από τις Εκδόσεις Bookstars! Το βιβλίο περιέχει 19 μαθηματικά σταυρόλεξα γεωμετρίας, βασισμένα στην ύλη των Μαθηματικών Α΄, Β΄ & Γ΄ Γυμνασίου, που έχει επιμεληθεί η εξαίρετη συνάδελφος και φίλη, Κωνσταντίνα Πάνου. Τα σταυρόλεξα είναι κατανεμημένα ανά τάξη και ανά κεφάλαιο και είναι ιδανικά για μια διασκεδαστική επανάληψη της θεωρίας. Το βιβλίο δραστηριοτήτων προορίζεται για όσους αγαπούν τα Μαθηματικά και μπορείτε να το βρείτε σε διάφορα ηλεκτρονικά βιβλιοπωλεία (bookstars, bibliotopia κ.ά) αλλά και στα site eshop.gr και plus4u.gr στην τιμή των €8.10!


ΜΑΘΗΜΑΤΙΚΑ ΣΤΑΥΡΟΛΕΞΑ ΓΕΩΜΕΤΡΙΑΣ


Λίγα λόγια για τη συγγραφέα:
  • Γεννήθηκε και μεγάλωσε στο Βόλο
  • Ολοκλήρωσε τις προπτυχιακές σπουδές πάνω στα Μαθηματικά στο Πανεπιστήμιο Ιωαννίνων
  • Μεταπτυχιακές σπουδές στο Πανεπιστήμιο Marconi της Ιταλίας στη Διοίκηση και Οργάνωση της Εκπαίδευσης και στο Πανεπιστήμιο Αιγαίου στα Καθαρά Μαθηματικά
  • Κάτοχος διπλωμάτων στην Ειδική Αγωγή
  • Έχει εργαστεί σε ελληνικά φροντιστήρια και σε αμερικάνικο κολλέγιο του εξωτερικού

Η συγγραφέας χαρίζει σε έναν τυχερό/τυχερή ένα αντίτυπο του βιβλίου αυτού, μαζί με το Μαθηματικό Ημερολόγιο 2021 που έχει επιμεληθεί η ίδια!




Για να πάρετε μέρος στην κλήρωση, πρέπει και αρκεί:
  1. Να είστε ακόλουθοι του blog "eis to apeiron" (η εγγραφή γίνεται με χρήση gmail).
  2. Για έξτρα συμμετοχές, διπλασιάστε ή τριπλασιάστε τις πιθανότητες επιτυχίας κάνοντας like στη σελίδα "Peira Mathcourses" στο facebook, αλλά και ακολουθώντας το λογαριασμό "@peira_mathcourses" στο instagram.
  3. Να αφήσετε ένα σχόλιο σε αυτή την ανάρτηση, δηλώνοντας ότι συμμετέχετε στο διαγωνισμό και αναφέροντας το e-mail σας.
  4. Προσοχή, φροντίστε να γράψετε το όνομά σας πριν υποβάλετε το σχόλιο, γιατί τα ανώνυμα σχόλια δεν λαμβάνονται υπόψιν!
  5. Αν διεκδικείτε έξτρα συμμετοχές μέσω facebook/instagram, μην ξεχάσετε να γράψετε επίσης και το όνομα που χρησιμοποιείτε σε facebook/instagram, ώστε να διασταυρωθούν οι συμμετοχές.

Ο διαγωνισμός λήγει την Παρασκευή 21 Μαΐου 2021 στις 12:00 τα μεσάνυχτα. Το Σάββατο 22 Μαΐου 2021 θα ανακοινωθεί στην παρούσα ανάρτηση ο τυχερός, ο οποίος θα αναδειχθεί με κλήρωση μέσω randomizer και θα ειδοποιηθεί μέσω e-mail (στο e-mail που έχει δηλώσει)! Τα δώρα θα σταλούν από τη συγγραφέα στο νικητή μόλις έχω τη διεύθυνσή του. Αν δεν επικοινωνήσει εντός μιας εβδομάδας, η κλήρωση θα επαναληφθεί.


1ο μαθηματικό giveaway

KEEP CALM AND CROSS THE MATH!
Καλή επιτυχία σε όλους!!!

_______________________________________________________________________________

EDIT (22/5/2021): Η ώρα ανάδειξης του νικητή έφτασε! Κατόπιν κληρώσεως των έγκυρων συμμετοχών μέσω του random name picker από το commentpicker.com, ο νικητής που κερδίζει τα "ΜΑΘΗΜΑΤΙΚΑ ΣΤΑΥΡΟΛΕΞΑ ΓΕΩΜΕΤΡΙΑΣ", συνοδευόμενα από το Μαθηματικό Ημερολόγιο 2021, είναι ο Βασίλης Χαλκιόπουλος! Ευχόμαστε να είναι πάντα τυχερός και να απολαύσει τα δώρα του!!! 


Δευτέρα 19 Απριλίου 2021

Ο... Θαναθάκηθ του Αρκά ξαναχτυπά!

 

θαναθάκης

Ο Θανασάκης ή "Αθανάθιοθ", όπως λέει ο ίδιος το όνομά του, ανήκει στις πρόσφατες δημιουργίες του Αρκά. Αυτός ο τρελός πιτσιρικάς, άλλοτε αφελής και άλλοτε κυνικός, συχνά σατιρίζει την αδελφή του μέσα από μαθηματικά προβλήματα! Δείτε ένα παλιότερο πρόβλημα εδώ... Ιδανικά για τους λάτρεις μαθηματικών γρίφων!

Δευτέρα 5 Απριλίου 2021

Μια απάντηση με... μαθηματικό χιούμορ!



Ο σπουδαίος Γερμανός μαθηματικός Richard Dedekind (1831-1916) είδε με έκπληξή του δώδεκα χρόνια πριν πεθάνει ότι το "Ημερολόγιο για Μαθηματικούς" του εκδοτικού οίκου Teubner τον κατέτασσε στους θανόντες μαθηματικούς, με ημερομηνία θανάτου 4 Σεπτεμβρίου 1899! Τότε ο Dedekind, που ήταν γνωστός για το χιούμορ του, έστειλε στον εκδοτικό οίκο την παρακάτω επιστολή:

 

«Για την ημέρα του θανάτου μου, την 4η Σεπτεμβρίου, μπορεί τελικά να αποδειχθεί ότι είναι ορθή, αλλά για το έτος έχετε σίγουρα λάθος. Σύμφωνα με το προσωπικό μου ημερολόγιο, την ημέρα εκείνη ήμουν απολύτως υγιής και απολάμβανα μια απολύτως ενδιαφέρουσα συζήτηση για το "Σύστημα και Θεωρία" με τον ομοτράπεζο και αγαπητό μου φίλο Georg Cantor».


Δευτέρα 22 Μαρτίου 2021

Γρίφος: Ένα καινοτόμο συνταξιοδοτικό πρόγραμμα!

 

Γρίφος: Ένα καινοτόμο συνταξιοδοτικό πρόγραμμα

Ένας επιχειρηματίας ανακοίνωσε στους υπαλλήλους του το παρακάτω συνταξιοδοτικό πρόγραμμα:

"Ο καθένας σας", είπε, "θα πάρει σύνταξη αμέσως μόλις συμπληρώσει 8 καθαρές ώρες στο ταμείο της εταιρείας. Η μόνη προϋπόθεση είναι ότι κανένας δεν επιτρέπεται να εργαστεί κάθε μέρα, περισσότερο από το μισό του χρόνου που του υπολείπεται για να συμπληρώσει αυτές τις 8 ώρες". 


Σε πόσες μέρες μπορεί κάποιος υπάλληλος να βγει στη σύνταξη;

Δευτέρα 1 Μαρτίου 2021

Μαθηματικά: Μίσος ή έρωτας;


Δεν ακούμε συχνά κάποιον να λέει ότι δεν του άρεσε ποτέ η Βιολογία ή Λογοτεχνία. Ασφαλώς αυτά τα αντικείμενα δεν ενθουσιάζουν τους πάντες, αλλά αυτοί που δεν ενθουσιάζονται τείνουν να κατανοούν απόλυτα ότι κάποιους άλλους τους ενθουσιάζουν. Αντιθέτως, τα Μαθηματικά, αλλά και τα αντικείμενα με "υψηλή περιεκτικότητα" σε Μαθηματικά, όπως η Φυσική ή η Χημεία, φαίνεται να προκαλούν όχι απλά αδιαφορία, αλλά πραγματική αντιπάθεια. Σε τι οφείλεται το γεγονός ότι πολλοί άνθρωποι εγκαταλείπουν τα μαθηματικά γνωστικά αντικείμενα με την πρώτη ευκαιρία και τα θυμούνται με τρόμο σε όλη την υπόλοιπη ζωή τους;


i love math


Ο Timothy Gowers, μαθηματικός και κάτοχος μετάλλιου Fields, στο βιβλίο του "Μαθηματικα: Μια Συνοπτική Εισαγωγή" τονίζει πως ίσως αυτό που βρίσκουν οι άνθρωποι μη ελκυστικό δεν είναι τόσο τα Μαθηματικά αυτά καθαυτά, όσο η εμπειρία των μαθημάτων Μαθηματικών, κάτι που είναι εύκολο να καταλάβουμε. Επειδή κάθε νέα μαθηματική γνώση χτίζεται πάνω στις προηγούμενες, είναι σημαντικό να μην αφήνονται κενά κατά την εκμάθησή τους. Για παράδειγμα, αν κάποιος δεν έχει εξοικειωθεί αρκετά με τον πολλαπλασιασμό διψήφιων αριθμών, πιθανότατα δεν θα έχει καλή διαισθητική αντίληψη ούτε για την επιμεριστική ιδιότητα. Χωρίς αυτήν, μάλλον δεν θα έχει ευχέρεια με τον πολλαπλασιασμό σε μια αλγεβρική παράσταση που περιέχει παρενθέσεις, όπως στην \( (x+1)(x-3)\) και άρα δεν θα μπορεί να καταλάβει καλά τις εξισώσεις δευτέρου βαθμού. Και τότε, ίσως να μην μπορεί να καταλάβει γιατί η χρυσή τομή είναι \( \frac{1+\sqrt{5}}{2} \).


Υπάρχουν πολλές αλυσίδες τέτοιου είδους, αλλά για να μην αφήνει κανείς κενά στα μαθηματικά δεν αρκεί να διατηρεί κάποια τεχνική ευχέρεια. Κάθε τόσο, εισάγεται μια καινούρια ιδέα που είναι πολύ σημαντική και αισθητά πιο σύνθετη από τις προηγούμενες και με κάθε τέτοια ιδέα υπάρχει το ενδεχόμενο να μείνει κανείς πίσω. Ένα παράδειγμα είναι η χρήση γραμμάτων (μεταβλητών) στη θέση των αριθμών, κάτι που μπερδεύει πολλούς, αλλά είναι κάτι θεμελιώδες για τα Μαθηματικά. Άλλα παραδείγματα είναι οι αρνητικοί αριθμοί, η τριγωνομετρία, η ύψωση σε δύναμη, οι λογάριθμοι και οι απαρχές του Απειροστικού Λογισμού της Γ΄ Λυκείου. Όσοι δεν είναι έτοιμοι να κάνουν το απαραίτητο εννοιολογικό άλμα, όταν συναντήσουν κάποια από αυτές τις ιδέες θα αισθάνονται στη συνέχεια ανασφάλεια με όλα τα Μαθηματικά που βασίζονται σε αυτή. Δεν είναι περίεργο που τα μαθήματα Μαθηματικών γίνονται, για πολλούς ανθρώπους, ένα είδος βασανιστηρίου.


Είναι όμως αυτή η κατάσταση αναπόφευκτη; Είναι απλώς κάποιοι μαθητές καταδικασμένοι να μισούν τα Μαθηματικά στο σχολείο; Ή μήπως θα ήταν δυνατόν να διδάσκεται το μάθημα διαφορετικά, με τέτοιον τρόπο ώστε να αποκλείονται τελικά από αυτό πολύ λιγότεροι μαθητές; Αν ένα παιδί λάβει από μικρή ηλικία μαθήματα μαθηματικών από κάποιον καλό και παθιασμένο δάσκαλο, θα μεγαλώσει με αγάπη για τα Μαθηματικά. Αν, επιπλέον, ο δάσκαλος είναι ικανός να διακρίνει το βαθμό ετοιμότητας των μαθητών του και να μπορεί να προσαρμόζει τη διδασκαλία του, τότε οι πιθανότητες να μισήσουν τα παιδιά αυτά τα Μαθηματικά, μειώνονται. Από αυτό, βέβαια, δεν προκύπτει άμεσα κάποια εφαρμόσιμη μέθοδος διδασκαλίας, αλλά τουλάχιστον δείχνει ότι υπάρχει περιθώριο βελτίωσης στον τρόπο διδασκαλίας των Μαθηματικών. 


Κλείνοντας, ο Manil Suri, μαθηματικός και συγγραφέας, επισημαίνει εύστοχα στο άρθρο του στην εφημερίδα New York Times με τίτλο "Πώς να ερωτευτείτε τα Μαθηματικά" ότι, σε αντίθεση με όσα πιστεύουν οι περισσότεροι για τα Μαθηματικά, πολλές μαθηματικές ιδέες δεν απαιτούν  ειδικές γνώσεις για να γίνουν κατανοητές και να εκτιμηθούν. "Σκεφτείτε", αναφέρει, "ότι για να εκτιμήσετε έναν πίνακα ζωγραφικής δεν είναι απαραίτητο να ξέρετε να ζωγραφίζετε, ούτε και για να απολαύσετε τη συμφωνική μουσική είναι απαραίτητο να μπορείτε να διαβάζετε παρτιτούρες". 



Πηγές-Αναφορές

Gowers T. (2020). Μαθηματικά: Μια Συνοπτική Εισαγωγή. Ηράκλειο: Πανεπιστημιακές Εκδόσεις Κρήτης

Suri M. (2013). How to fall in love with math. New York Times.