Παρασκευή 20 Αυγούστου 2021

"Φονικό στη Μεγάλη Εκκλησία" του Τεύκρου Μιχαηλίδη

 

Κωνσταντινούπολη, 27 Δεκεμβρίου 537, ημέρα των εγκαινίων της Μεγάλης Εκκλησίας. Ο Ιωάννης, στενός συνεργάτης των αρχιτεκτόνων της, βρίσκεται δολοφονημένος. Όλες οι ενδείξεις οδηγούν στη Θεανώ, πρώην σπουδάστρια στην Ακαδημία του Πλάτωνος και στενή φίλη του θύματος. Ο Ευτόκιος ο Ασκαλωνίτης, ένας άνθρωπος που έχει αφιερώσει τη ζωή του στη συγκέντρωση και διάσωση των έργων του Αρχιμήδη, αναλαμβάνει να εξιχνιάσει την υπόθεση: είναι πράγματι ένοχη η νεαρή μαθηματικός, ή μήπως έχει πέσει θύμα μιας καλοστημένης συνωμοσίας;


Τεύκρος Μιχαηλίδης - Φονικό στη μεγάλη εκκλησία
Το βιβλίο του Τεύκρου Μιχαηλίδη από τις εκδόσεις "Πόλις"


Ιστορικά πρόσωπα, όπως η Θεοδώρα και ο Ιουστινιανός, αλλά και μυθοπλαστικοί ήρωες συναντιούνται και αλληλεπιδρούν σε αυτό το μοναδικό μυθιστόρημα για να ζωντανέψουν το κλίμα της μετάβασης από την 'Υστερη Αρχαιότητα στον πρώτο βυζαντινό χρυσό αιώνα. Η αρχαία φιλοσοφία πεθαίνει, κληροδοτώντας όμως στον καινούργιο κόσμο την κατακτημένη σοφία της: τη γεωμετρία και τη μηχανική της. Χωρίς αυτές, θαύματα όπως ο Ναός της Αγίας του Θεού Σοφίας δεν θα έπαιρναν ποτέ σάρκα και οστά. Στο προσκήνιο αυτής της ιδιόμορφης σύγκρουσης, ο μύθος εκτυλίσσεται μέσα από σκάνδαλα, καταχρήσεις, μισαλλοδοξία και, κυρίως, μέσα από την αιώνια πάλη για εξουσία. 

Το προτείνω ανεπιφύλακτα για λάτρεις -και μη- των Μαθηματικών!



"Όλοι όσοι εξάγουν συμπεράσματα δια του αδυνάτου, οδηγούνται μέσω συλλογισμών σ' ένα λανθασμένο συμπέρασμα και έτσι αποδεικνύουν την αρχική υπόθεση, καταλήγοντας σε κάτι ψευδές έχοντας υποθέσει το αντίθετο".

(Αριστοτέλης - Απόσπασμα από το βιβλίο)

Τρίτη 10 Αυγούστου 2021

Η έλλειψη μαθηματικής εκπαίδευσης επηρεάζει αρνητικά τον εφηβικό εγκέφαλο

 

Η έλλειψη μαθηματικής εκπαίδευσης και σχετικών δεξιοτήτων στην εφηβική ηλικία μπορεί να αποβεί επιζήμια για τον εγκέφαλο και τη γνωστική ανάπτυξη των εφήβων, σύμφωνα με βρετανική έρευνα.


Η έλλειψη μαθηματικής εκπαίδευσης επηρεάζει αρνητικά τον εφηβικό εγκέφαλο


Οι έφηβοι που έχουν σταματήσει να μελετούν μαθηματικά εμφανίζουν μειονέκτημα σε σχέση με τους συνομηλίκους τους που συνεχίζουν και μετά τα 16 να ασχολούνται με τα μαθηματικά, σύμφωνα με μία νέα βρετανική επιστημονική έρευνα. Η μελέτη δείχνει ότι η έλλειψη μαθηματικής εκπαίδευσης και σχετικών δεξιοτήτων στην εφηβική ηλικία μπορεί να αποβεί επιζήμια για τον εγκέφαλο και τη γνωστική ανάπτυξη των εφήβων.

Ο εγκέφαλος όσων δεν ασχολούνται πια με τα μαθηματικά εμφανίζει έλλειψη σε μία ζωτική χημική ουσία (το γ-αμινοβουτυρικό οξύ ή GABA), που παίζει ρόλο-κλειδί για την πλαστικότητα και την ανάπτυξη του εγκεφάλου, με αποτέλεσμα να επηρεάζεται αρνητικά η ικανότητα για μνήμη, μάθηση, λογικούς συλλογισμούς και επίλυση προβλημάτων.

Οι ερευνητές του Τμήματος Πειραματικής Ψυχολογίας του Πανεπιστημίου της Οξφόρδης, με επικεφαλής τον καθηγητή Γνωστικής Νευροεπιστήμης Ρόι Κοέν Καντός, οι οποίοι έκαναν τη σχετική δημοσίευση στο περιοδικό της Εθνικής Ακαδημίας Επιστημών των ΗΠΑ (PNAS), μελέτησαν 133 μαθητές ηλικίας 14 έως 18 ετών.

Σε αντίθεση με πολλές χώρες, η Βρετανία δίνει τη δυνατότητα στους 16χρονους μαθητές να αποφασίσουν να σταματήσουν τελείως τη μαθηματική εκπαίδευσή τους. Έτσι είναι εφικτό να διαπιστωθεί κατά πόσο αυτό επιδρά στον εγκέφαλο και στις γνωστικές λειτουργίες του. Όπως διαπιστώθηκε, όσοι δεν έκαναν πια μαθηματικά είχαν αισθητά λιγότερο GABA στον εγκέφαλό τους, κάτι που δεν ίσχυε πριν πάρουν την απόφαση να τα σταματήσουν.

Ο Κοέν Καντός δήλωσε ότι «οι μαθηματικές δεξιότητες σχετίζονται με μία ευρεία γκάμα από οφέλη, όπως η απασχόληση, η κοινωνικοοικονομική κατάσταση, καθώς επίσης η σωματική και ψυχική υγεία. Η εφηβεία είναι μία σημαντική περίοδος της ζωής που σχετίζεται με σημαντικές εγκεφαλικές και γνωστικές μεταβολές. Δυστυχώς, η διακοπή της μελέτης των μαθηματικών σε αυτήν την ηλικία φαίνεται να οδηγεί σε μία υστέρηση των εφήβων που τα σταματούν, σε σχέση με όσους συνεχίζουν τη μελέτη των μαθηματικών».

«Δεν είναι -ακόμη- γνωστό πώς αυτή η υστέρηση ή οι επιπτώσεις της σε βάθος χρόνου μπορούν να αποτραπούν. Τα μαθηματικά δεν αρέσουν σε όλους, γι' αυτό χρειαζόμαστε εναλλακτικές λύσεις, όπως η εξάσκηση στη λογική και στη συλλογιστική, που ενεργοποιούν την ίδια περιοχή του εγκεφάλου με τα μαθηματικά», πρόσθεσε.

Οι ερευνητές τόνισαν, επίσης, πως δεδομένου ότι αρκετοί μαθητές είχαν περιορισμένη ή καθόλου πρόσβαση στην εκπαιδευτική διαδικασία και ειδικότερα στα μαθηματικά στη διάρκεια της πανδημίας Covid-19, αυτό μπορεί να αποδειχθεί πρόβλημα στο μέλλον. Στη μελέτη συμμετείχε και ο μεταδιδακτορικός ερευνητής Γιώργος Ζαφειρόπουλος, απόφοιτος του Πανεπιστημίου της Κύπρου.



Πηγή:
alfavita

Πέμπτη 5 Αυγούστου 2021

Το αρχαιότερο δείγμα εφαρμοσμένης γεωμετρίας στον κόσμο!

 

Ο δρ Ντάνιελ Μάνσφιλντ από το Πανεπιστήμιο της Νέας Νότιας Ουαλίας στο Σίδνεϋ αποκάλυψε την προέλευση της εφαρμοσμένης γεωμετρίας σε μία πήλινη βαβυλωνιακή πλάκα ηλικίας περίπου 3.700 ετών. Η πλάκα, που χρονολογείται από την Παλαιο-Βαβυλωνιακή περίοδο (μεταξύ του 1900 και 1600 π.Χ.), είχε ανακαλυφθεί στο κεντρικό Ιράκ το 1894. Τα τελευταία χρόνια βρισκόταν στο Αρχαιολογικό Μουσείο της Κωνσταντινούπολης, χωρίς να έχει γίνει αντιληπτή η σημασία της για την ιστορία των μαθηματικών.


Η πλάκα Si.427
Credit: UNSW Sydney


Η πλάκα με την ονομασία Si.427, η οποία δημιουργήθηκε από Βαβυλώνιους «τοπογράφους», μελετήθηκε από τον Ντάνιελ Μάνσφιλντ, ο οποίος έκανε και τη σχετική δημοσίευση στο επιστημονικό περιοδικό «Foundations of Science». Σύμφωνα με τον ίδιο, «πρόκειται για το μοναδικό γνωστό παράδειγμα κτηματολογικού «εγγράφου» από την Παλαιο-Βαβυλωνιακή περίοδο του 1900-1600 π.Χ. και αφορά ένα σχέδιο που χρησιμοποιούσαν οι «τοπογράφοι» για να καθορίζουν τα χερσαία όρια. Στη συγκεκριμένη περίπτωση, περιέχει νομικές και γεωμετρικές λεπτομέρειες σχετικά με ένα κτήμα που χωρίστηκε μετά την πώληση ενός τμήματός του».

Θεωρείται σημαντικό ότι ο «τοπογράφος» χρησιμοποιεί τις πυθαγόρειες τριάδες για να δημιουργήσει ακριβείς ορθές γωνίες. «Η ανακάλυψη και η ανάλυση της πλάκας έχουν σημαντικές επιπτώσεις για την ιστορία των μαθηματικών. Για παράδειγμα, η πλάκα δημιουργήθηκε πάνω από 1000 χρόνια προτού γεννηθεί ο Πυθαγόρας», επισημαίνει ο Μάνσφιλντ.

 

Άλλη μία παγκόσμια πρωτιά

Το 2017, ο ίδιος μαθηματικός είχε εικάσει ότι μία άλλη πλάκα της ίδιας περιόδου, γνωστή ως «Πλίμπτον 322», αποτελεί μοναδικό δείγμα τριγωνομετρικού πίνακα. Όπως ανέφερε, «είναι γενικά αποδεκτό ότι η τριγωνομετρία -ο κλάδος των μαθηματικών που ασχολείται με τη μελέτη των τριγώνων- αναπτύχθηκε από τους αρχαίους Έλληνες που μελετούσαν τον νυχτερινό ουρανό κατά τον 2ο αιώνα π.Χ. Όμως οι Βαβυλώνιοι είχαν αναπτύξει τη δική τους εναλλακτική “πρωτο-τριγωνομετρία” για να λύνουν προβλήματα σχετικά με μετρήσεις επί του εδάφους και όχι στον ουρανό».


Η πλάκα Si.427
Credit: UNSW Sydney
 

Η αποκάλυψη του σκοπού της πλάκας: Τοπογραφία

Η πλάκα Si.427 θεωρείται ότι υπήρξε πριν και από την «Πλίμπτον 322». Το 2017, η ομάδα του Μάνσφιλντ είχε διατυπώσει την εικασία της σχετικά με το σκοπό της πλάκας «Πλίμπτον 322», υποθέτοντας ότι πιθανότατα είχε κάποια πρακτική χρήση όπως η κατασκευή παλατιών και ναών, δημιουργία καναλιών ή ο καθορισμός ορίων κτημάτων.

«Με τη νέα πλάκα μπορούμε, πράγματι, να δούμε για πρώτη φορά γιατί (οι Βαβυλώνιοι) ενδιαφέρονταν για τη γεωμετρία: Ήθελαν να χαράζουν ακριβή όρια στο έδαφος. Ήταν μία περίοδος που η γη άρχιζε να γίνεται ιδιωτική και οι άνθρωποι άρχισαν να σκέφτονται με όρους “η γη μου και η γη σου”. Ήθελαν, έτσι, να χαράζουν ξεκάθαρα όρια, προκειμένου να έχουν καλές σχέσεις με τους γείτονές τους. Ακριβώς αυτό αφορά και η εν λόγω πλάκα: Ένα χωράφι διαχωρίστηκε και νέα όρια χαράχτηκαν», σημείωσε ο Μάνσφιλντ.

Άλλες πλάκες, που έχουν ήδη βρεθεί από εκείνη την περίοδο στη Βαβυλώνα, αποκαλύπτουν όντως ότι υπήρχαν διαφωνίες σχετικά με τα σύνορα των κτημάτων και για το ποιος ήταν π.χ. ο ιδιοκτήτης πολύτιμων δέντρων όπως οι φοίνικες, που βρίσκονταν κοντά στο όριο των γειτνιαζόντων κτημάτων. Σε τέτοιες περιπτώσεις, επιθεωρητές-τοπογράφοι καλούνταν να διευθετήσουν τη διαφωνία και η εφαρμοσμένη γεωμετρία ήταν ένα πολύ χρήσιμο εργαλείο.

 

Κατασκευάζοντας ορθές γωνίες: Εύκολο να το πεις, δύσκολο να το κάνεις

Ένας απλός τρόπος να κατασκευάσεις μια ορθή γωνία με απόλυτη ακρίβεια, είναι να φτιάξεις ένα τρίγωνο με πλευρές 3, 4 και 5. Αυτοί οι ειδικοί αριθμοί αποτελούν την πυθαγόρεια τριάδα 3-4-5. Έχει χρησιμοποιηθεί από αρχαίους τοπογράφους και χτίστες και χρησιμοποιείται μέχρι σήμερα.

«Οι αρχαίοι τοπογράφοι που δημιούργησαν την πλάκα Si.427 έκαναν κάτι διαφορετικό: Χρησιμοποίησαν μια ποικιλία διαφορετικών πυθαγόρειων τριάδων και ως πλευρές ορθογωνίων τριγώνων και ως πλευρές και διαγώνιο ορθογωνίου, προκειμένου να κατασκευάζονται ορθές γωνίες με ακρίβεια», δηλώνει ο Μάνσφιλντ.

Ωστόσο, είναι δύσκολο να δουλέψεις με πρώτους αριθμούς μεγαλύτερους του 5 στο εξηκονταδικό σύστημα των Βαβυλωνίων.

 

Η πλάκα Si.427
Credit: UNSW Sydney

Τα άγνωστα –μέχρι τώρα- μυστικά του Si.427

Ο δρ Μάνσφιλντ ελπίζει να ανακαλύψει άλλες εφαρμογές της “πρωτο-τριγωνομετρίας” των Βαβυλωνίων. Στο πίσω μέρος της πλάκας, αναγράφεται ο εξηκονταδικός αριθμός 25:29, δηλαδή 25 εξηντάδες και 29 μονάδες (σκεφτείτε το σαν 25 λεπτά και 29 δευτερόλεπτα).

«Δεν μπορώ να βρω τι σημαίνουν αυτοί οι αριθμοί – είναι το απόλυτο αίνιγμα», αναφέρει ο δρ Μάνσφιλντ. «Είμαι πρόθυμος να το συζητήσω με ιστορικούς ή μαθηματικούς που μπορεί να έχουν μια ιδέα τι θέλουν να μας πουν οι αριθμοί αυτοί!»


Πηγή:

Διαβάστε επίσης σχετικά με την έρευνα του δρ Ντάνιελ Μάνσφιλντ:

Δευτέρα 2 Αυγούστου 2021

Γρίφος: Τα... 1.023 πορτοκάλια

 

Γρίφος: Τα... 1.023 πορτοκάλια
Henri Matisse (1869-1954) - "Basket with Oranges" (1913)



Ας υποθέσουμε ότι είσαι οπωροπώλης και έχεις 1.023 πορτοκάλια. Πρέπει να τα μοιράσεις σε 10 σακούλες με τέτοιο τρόπο, ώστε όσα πορτοκάλια και να σου ζητήσει ο πελάτης (από 1 μέχρι 1.023, φυσικά) να μπορείς να του δώσεις ορισμένες σακούλες από αυτές (μία, δύο κλπ. ή όλες) με συνολικά το πλήθος των πορτοκαλιών που ζητάει και χωρίς να χρειαστεί να μεταφέρεις κανένα πορτοκάλι από τη μια σακούλα στην άλλη. 

Πώς θα μοιράσεις τα 1.023 πορτοκάλια στις 10 σακούλες;


*Σημείωση*

Τον γρίφο αυτόν μου τον πρότεινε μια μαθήτρια της Α΄ Λυκείου.

Κυριακή 1 Αυγούστου 2021

Περί του αριθμού 1821


Καλό μήνα σε όλους!

1/8/21 σήμερα! Ή αλλιώς... 1821!

Το έτος της ελληνικής επανάστασης.


1821



Δείτε όμως περισσότερες ιδιότητες του αριθμού της σημερινής ημερομηνίας, από τον εξαιρετικό συνάδελφο που μου έστειλε την παραπάνω εικόνα...

©Rushik Dharaiya Ka Pitaara 

Σάββατο 31 Ιουλίου 2021

Περί του αριθμού 31721 (η σημερινή ημερομηνία!)

 

31721


31/7/21 σήμερα... 

Στην εικόνα μπορείτε να διαβάσετε τις ιδιότητες που "κρύβει" η σημερινή ημερομηνία, δηλαδή ο αριθμός 31721.

Πρόκειται για μια πραγματικά ενδιαφέρουσα και αξιόλογη δουλειά του συναδέλφου Rushik Dharaiya, τον οποίο ευχαριστώ θερμά! 

©Rushik Dharaiya Ka Pitaara



"Τα μαθηματικά είναι το αλφάβητο με το οποίο ο Θεός περιέγραψε το Σύμπαν".

Γαλιλαίος

Παρασκευή 30 Ιουλίου 2021

Περί του αριθμού 30721 (η σημερινή ημερομηνία!)


30721


30/7/21 σήμερα... 

Στην εικόνα μπορείτε να διαβάσετε τις αξιοσημείωτες ιδιότητες που "κρύβει" η σημερινή ημερομηνία, δηλαδή ο αριθμός 30721.

Πρόκειται για μια αξιόλογη δουλειά. 30721 ευχαριστώ στον εξαιρετικό συνάδελφο που δημιούργησε και μου έστειλε την εικόνα!

©Rushik Dharaiya Ka Pitaara 

Πέμπτη 29 Ιουλίου 2021

Περί του αριθμού 29721 (η σημερινή ημερομηνία!)


29721

29/7/21

Στην εικόνα μπορείτε να διαβάσετε τις ιδιότητες του αριθμού της σημερινής ημερομηνίας: 29721 

Πρόκειται για μια πραγματικά ενδιαφέρουσα και αξιόλογη δουλειά! 

©Rushik Dharaiya Ka Pitaara



"Πάντα κατ' αριθμόν γίνονται"

(Τα πάντα γίνονται κατά τους αριθμούς)

Πυθαγόρας

Τετάρτη 28 Ιουλίου 2021

Περί του αριθμού 28721 (η σημερινή ημερομηνία!)


28721


28/7/21

Στην εικόνα μπορείτε να διαβάσετε τις ιδιότητες του αριθμού της σημερινής ημερομηνίας: 28721

©Rushik Dharaiya Ka Pitaara 

Τρίτη 27 Ιουλίου 2021

Περί του αριθμού 27721 (η σημερινή ημερομηνία!)

 

Ο αριθμός 27721


27/7/21 σήμερα...

Στην εικόνα βλέπουμε τις ιδιότητες που "κρύβονται" στη σημερινή ημερομηνία, δηλαδή κάποιες ενδιαφέρουσες ιδιότητες του αριθμού: 29721 


Πρόκειται για μια πραγματικά αξιόλογη δουλειά του συναδέλφου Rushik Dharaiya, τον οποίο ευχαριστώ θερμά! 

©Rushik Dharaiya Ka Pitaara



"Η μαθηματική γλώσσα, εκτός του ότι είναι η μοναδική γλώσσα που μπορούμε να μιλήσουμε, είναι στην πραγματικότητα η σωστή γλώσσα".

E.P. Wigner