Μυθιστόρημα γραμμένο το 1979,
παραμονές της ανόδου της Θάτσερ στην Αγγλία και του Ρέηγκαν στις ΗΠΑ,
περιγράφει με γλαφυρότητα την επερχόμενη νεοφιλελεύθερη λαίλαπα και συνάμα
ρίχνει μια νοσταλγική ματιά στη χρυσή δεκαετία του '60, τότε που, παρά τους
διαφαινόμενους κινδύνους, όλα έμοιαζαν ρόδινα… Διαβάζοντας το βιβλίο, ο
αναγνώστης παρακολουθεί δύο παράλληλες πλοκές: μία στο εργαστήριο Κάβεντις του
Πανεπιστημίου του Καίμπριτζ της Αγγλίας το 1998 και μία στο Τμήμα Φυσικής του
Πανεπιστημίου της Λα Χόγια στο νοτιοδυτικό άκρο της Καλιφόρνια το 1963.
1998. Η ανθρωπότητα έχει φτάσει στο χείλος της καταστροφής. Πόλεμοι, οικονομική κρίση, ανεργία, πείνα, εγκληματικότητα. Μια νέα μορφή μόλυνσης εξαπλώνεται ταχύτατα και απειλεί τον πλανήτη με τρομακτική οικολογική καταστροφή. Για όλα αυτά τα δεινά ευθύνονται λανθασμένες πολιτικές και επιστημονικές επιλογές που έγιναν τη δεκαετία του '60. Αν μπορούσαμε ν' αποδράσουμε από το χρόνο, να γυρίσουμε πίσω στο 1960, να επανορθώσουμε... Στο εργαστήριο Κάβεντις στο Καίμπριτζ, μια ομάδα επιστημόνων με επικεφαλής τον Ρένφρου, έχει αναπτύξει μία τεχνολογία παραγωγής ταχυονίων (υποατομικά σωματίδια με ταχύτητα μεγαλύτερη του φωτός, που μπορούν να κινηθούν πίσω στο χρόνο). Στόχος τους είναι να στείλουν ένα μήνυμα που θα προειδοποιήσει τους επιστήμονες του παρελθόντος για την επικείμενη καταστροφή, αποφεύγοντας όμως τα παράδοξα που θα μπορούσαν να προκύψουν από την αλλοίωση του παρελθόντος....
1963. Ο δυτικός κόσμος βιώνει
τη χρυσή του εποχή. Την εποχή των hippies, της ανέμελης
φοιτητικής ζωής με σέρφινγκ στα κύματα του Ειρηνικού, του rock ‘n’ roll, της
ελευθερίας της έκφρασης, των μεγάλων αυτοκινήτων, των φιλόδοξων διαστημικών
προγραμμάτων αλλά και του Βιετνάμ... Ο Γκόρντον, ένας νεαρός, προικισμένος και
φιλόδοξος φυσικός, κάνει ένα πείραμα πυρηνικής φυσικής μέσα σ' ένα εχθρικό
κοινωνικό και πανεπιστημιακό περιβάλλον. Διαπιστώνει με περιέργεια, ανησυχία
και στο τέλος με ελπίδα ότι το πείραμά του παρεμποδίζεται από ανεξήγητης
προέλευσης παράσιτα που φαίνεται να έρχονται από το διάστημα, ή ίσως από το
μέλλον...
Θα καταφέρει ο Ρένφρου να
αποδράσει από το χρόνο; Θα μπορέσει να στείλει στο παρελθόν στοιχεία ικανά να
επηρεάσουν το παρόν και το μέλλον; Θα κατορθώσει ο Γκόρντον να «διαβάσει» τα
μηνύματα και να αντιδράσει εγκαίρως;
Έργο επιστημονικής φαντασίας,
κάμπους νόβελ, οικολογικό θρίλερ, βιωματικό μυθιστόρημα, η «Απόδραση από το Χρόνο»
έχει κάτι από όλα αυτά. Προτείνεται από την ομάδα «ΘΑΛΗΣ + ΦΙΛΟΙ» ως ανάγνωσμα σε
λέσχες ανάγνωσης μαθηματικής λογοτεχνίας, ιδανικό για μαθητές Λυκείου. Ενθαρρύνεται,
μάλιστα, με αφορμή αποσπάσματα του βιβλίου, να γίνονται διάφορες ερωτήσεις που
προάγουν τη μαθηματική παιδεία.
















![Πρώτος καλείται ένας φυσικός αριθμός που διαιρείται μόνο με το 1 και τον εαυτό του. Για παράδειγμα οι αριθμοί 2, 3, 11, 17 είναι πρώτοι. Ένας αριθμός που δεν είναι πρώτος καλείται σύνθετος. Για παράδειγμα, ο αριθμός 9 είναι σύνθετος, αφού εκτός της μονάδας και του εαυτού του έχει διαιρέτη και το 3. Επειδή το 1 έχει μόνο έναν διαιρέτη (το 1, που είναι και ο εαυτός του), δεν είναι ούτε πρώτος ούτε σύνθετος αριθμός. Το 2 είναι ο μοναδικός άρτιος πρώτος, ενώ όλοι οι υπόλοιποι πρώτοι αριθμοί είναι περιττοί. Μπορούμε να βρούμε όλους τους πρώτους αριθμούς με ένα «κόσκινο»: Το κόσκινο του Ερατοσθένη κρατάει όλους τους σύνθετους αριθμούς και αφήνει να περάσουν όλοι οι πρώτοι. Για να βρούμε τους πρώτους αριθμούς, εργαζόμαστε ως εξής: 1. Αφήνουμε απέξω το 1 (είπαμε: δεν είναι ούτε πρώτος, ούτε σύνθετος). 2. Παίρνουμε τον επόμενο αριθμό (το 2). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του. 3. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 3). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν έχουν σβηστεί από πριν, ως πολλαπλάσια του 2). 4. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 5). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα έχουν σβηστεί από πριν). 5. Παίρνουμε τον επόμενο αριθμό που έμεινε (το 7). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν είναι σβησμένα από πριν). Με τον ίδιο τρόπο συνεχίζουμε για πάντα (αφού οι αριθμοί δεν τελειώνουν ποτέ)! Αν όμως θέλουμε να βρούμε τους πρώτους αριθμούς μέχρι το 120 (όπως κάνουμε τώρα), δεν χρειάζεται να προχωρήσουμε παραπάνω από το 7, αφού... ...οι αριθμοί που έχουν μείνει, (αυτοί που είναι μέσα στα κυκλάκια) είναι οι πρώτοι αριθμοί. Οι πρώτοι αριθμοί μέχρι το 120 δίνονται παρακάτω: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113. Γεννάται λοιπόν το ερώτημα: Πόσοι είναι οι πρώτοι αριθμοί; Την απάντηση έδωσε ο Ευκλείδης στα Στοιχεία (πρόταση ΙΧ.20) που αποδεικνύει ότι το πλήθος τους είναι άπειρο. Η απόδειξη παραφράζεται εδώ και είναι η εξής: Εξετάστε οποιαδήποτε πεπερασμένη λίστα πρώτων αριθμών \(p_1, p_2 , ..., p_n\). Θα αποδειχθεί, ότι υπάρχει τουλάχιστον ένας πρόσθετος πρώτος αριθμός, που δεν υπάρχει στη λίστα. Έστω \(P\) το γινόμενο όλων των πρώτων αριθμών στη λίστα, δηλ. \[P =p_1 \cdot p_2 \cdot ... \cdot p_n\]. Ας είναι \(q = P + 1\). Τότε ο \(q\) είναι είτε πρώτος ή όχι: • Εάν ο \(q\) είναι πρώτος, τότε υπάρχει τουλάχιστον ένας ακόμη πρώτος, που δεν περιλαμβάνεται στη λίστα. • Εάν ο \(q\) δεν είναι πρώτος, τότε κάποιος πρώτος παράγοντας \(p\) διαιρεί τον \(q\). Εάν αυτός ο παράγοντας \(p\) ήταν στη λίστα μας, τότε θα διαιρούσε το \(P\) (αφού το \(P\) είναι το γινόμενο κάθε αριθμού στη λίστα). Αλλά ο \(p\) διαιρεί επίσης το \(P + 1 = q\), όπως μόλις αναφέρθηκε. Εάν ο \(p\) διαιρεί το P και το q, τότε το p πρέπει επίσης να διαιρεί τη διαφορά των δύο αριθμών, που είναι \( (P + 1) - P = 1\). Δεδομένου ότι κανένας πρώτος αριθμός δεν διαιρεί το \(1\), ο \(p\) δεν μπορεί να είναι στη λίστα. Αυτό σημαίνει, ότι υπάρχει τουλάχιστον ένας ακόμη πρώτος αριθμός πέραν εκείνων της λίστας. Αυτό αποδεικνύει, ότι για κάθε πεπερασμένη λίστα πρώτων αριθμών, υπάρχει ένας πρώτος αριθμός, που δεν βρίσκεται στη λίστα. Άρα οι πρώτοι αριθμοί είναι άπειροι στο πλήθος. Η απόδειξη αυτή του Ευκλείδη θεωρείται από τις κομψότερες αποδείξεις στην ιστορία των μαθηματικών. Πρώτος καλείται ένας φυσικός αριθμός που διαιρείται μόνο με το 1 και τον εαυτό του. Για παράδειγμα οι αριθμοί 2, 3, 11, 17 είναι πρώτοι. Ένας αριθμός που δεν είναι πρώτος καλείται σύνθετος. Για παράδειγμα, ο αριθμός 9 είναι σύνθετος, αφού εκτός της μονάδας και του εαυτού του έχει διαιρέτη και το 3. Επειδή το 1 έχει μόνο έναν διαιρέτη (το 1, που είναι και ο εαυτός του), δεν είναι ούτε πρώτος ούτε σύνθετος αριθμός. Το 2 είναι ο μοναδικός άρτιος πρώτος, ενώ όλοι οι υπόλοιποι πρώτοι αριθμοί είναι περιττοί. Μπορούμε να βρούμε όλους τους πρώτους αριθμούς με ένα «κόσκινο»: Το κόσκινο του Ερατοσθένη κρατάει όλους τους σύνθετους αριθμούς και αφήνει να περάσουν όλοι οι πρώτοι. Για να βρούμε τους πρώτους αριθμούς, εργαζόμαστε ως εξής: 1. Αφήνουμε απέξω το 1 (είπαμε: δεν είναι ούτε πρώτος, ούτε σύνθετος). 2. Παίρνουμε τον επόμενο αριθμό (το 2). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του. 3. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 3). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν έχουν σβηστεί από πριν, ως πολλαπλάσια του 2). 4. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 5). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα έχουν σβηστεί από πριν). 5. Παίρνουμε τον επόμενο αριθμό που έμεινε (το 7). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν είναι σβησμένα από πριν). Με τον ίδιο τρόπο συνεχίζουμε για πάντα (αφού οι αριθμοί δεν τελειώνουν ποτέ)! Αν όμως θέλουμε να βρούμε τους πρώτους αριθμούς μέχρι το 120 (όπως κάνουμε τώρα), δεν χρειάζεται να προχωρήσουμε παραπάνω από το 7, αφού... ...οι αριθμοί που έχουν μείνει, (αυτοί που είναι μέσα στα κυκλάκια) είναι οι πρώτοι αριθμοί. Οι πρώτοι αριθμοί μέχρι το 120 δίνονται παρακάτω: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113. Γεννάται λοιπόν το ερώτημα: Πόσοι είναι οι πρώτοι αριθμοί; Την απάντηση έδωσε ο Ευκλείδης στα Στοιχεία (πρόταση ΙΧ.20) που αποδεικνύει ότι το πλήθος τους είναι άπειρο. Η απόδειξη παραφράζεται εδώ και είναι η εξής: Εξετάστε οποιαδήποτε πεπερασμένη λίστα πρώτων αριθμών \(p_1, p_2 , ..., p_n\). Θα αποδειχθεί, ότι υπάρχει τουλάχιστον ένας πρόσθετος πρώτος αριθμός, που δεν υπάρχει στη λίστα. Έστω \(P\) το γινόμενο όλων των πρώτων αριθμών στη λίστα, δηλ. \[P =p_1 \cdot p_2 \cdot ... \cdot p_n\]. Ας είναι \(q = P + 1\). Τότε ο \(q\) είναι είτε πρώτος ή όχι: • Εάν ο \(q\) είναι πρώτος, τότε υπάρχει τουλάχιστον ένας ακόμη πρώτος, που δεν περιλαμβάνεται στη λίστα. • Εάν ο \(q\) δεν είναι πρώτος, τότε κάποιος πρώτος παράγοντας \(p\) διαιρεί τον \(q\). Εάν αυτός ο παράγοντας \(p\) ήταν στη λίστα μας, τότε θα διαιρούσε το \(P\) (αφού το \(P\) είναι το γινόμενο κάθε αριθμού στη λίστα). Αλλά ο \(p\) διαιρεί επίσης το \(P + 1 = q\), όπως μόλις αναφέρθηκε. Εάν ο \(p\) διαιρεί το P και το q, τότε το p πρέπει επίσης να διαιρεί τη διαφορά των δύο αριθμών, που είναι \( (P + 1) - P = 1\). Δεδομένου ότι κανένας πρώτος αριθμός δεν διαιρεί το \(1\), ο \(p\) δεν μπορεί να είναι στη λίστα. Αυτό σημαίνει, ότι υπάρχει τουλάχιστον ένας ακόμη πρώτος αριθμός πέραν εκείνων της λίστας. Αυτό αποδεικνύει, ότι για κάθε πεπερασμένη λίστα πρώτων αριθμών, υπάρχει ένας πρώτος αριθμός, που δεν βρίσκεται στη λίστα. Άρα οι πρώτοι αριθμοί είναι άπειροι στο πλήθος. Η απόδειξη αυτή του Ευκλείδη θεωρείται από τις κομψότερες αποδείξεις στην ιστορία των μαθηματικών.](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh_POBYezeTX1QFcu2kdkg8WeD6GFxphFv3Rtswmw7ANo2PC0QnVvSIvN8pdN_PrGLMjKz9nPzRgPoCR8x7NJZXfsIff30zd-E8NpaKXXm6Ms6YFDcMKmnG8an1JyBtjpSH1J6Fg4OCCkvDBamkuNDLe_HOfFr9YVxngoltl2dYqY1O4xDwZg6nJIK8WG2I/w334-h400-rw/%CE%A4%CE%BF%20%CE%BA%CF%8C%CF%83%CE%BA%CE%B9%CE%BD%CE%BF%20%CF%84%CE%BF%CF%85%20%CE%95%CF%81%CE%B1%CF%84%CE%BF%CF%83%CE%B8%CE%AD%CE%BD%CE%B7.png)

