Η αγαπημένη Vi Hart ξαναχτυπά... απολαύστε την!
Κυριακή 14 Μαρτίου 2021
Δευτέρα 1 Μαρτίου 2021
Μαθηματικά: Μίσος ή έρωτας;
Δεν ακούμε συχνά κάποιον να λέει ότι δεν του άρεσε ποτέ η Βιολογία ή Λογοτεχνία. Ασφαλώς αυτά τα αντικείμενα δεν ενθουσιάζουν τους πάντες, αλλά αυτοί που δεν ενθουσιάζονται τείνουν να κατανοούν απόλυτα ότι κάποιους άλλους τους ενθουσιάζουν. Αντιθέτως, τα Μαθηματικά, αλλά και τα αντικείμενα με "υψηλή περιεκτικότητα" σε Μαθηματικά, όπως η Φυσική ή η Χημεία, φαίνεται να προκαλούν όχι απλά αδιαφορία, αλλά πραγματική αντιπάθεια. Σε τι οφείλεται το γεγονός ότι πολλοί άνθρωποι εγκαταλείπουν τα μαθηματικά γνωστικά αντικείμενα με την πρώτη ευκαιρία και τα θυμούνται με τρόμο σε όλη την υπόλοιπη ζωή τους;
Ο Timothy Gowers, μαθηματικός και κάτοχος μετάλλιου Fields, στο βιβλίο του "Μαθηματικα: Μια Συνοπτική Εισαγωγή" τονίζει πως ίσως αυτό που βρίσκουν οι άνθρωποι μη ελκυστικό δεν είναι τόσο τα Μαθηματικά αυτά καθαυτά, όσο η εμπειρία των μαθημάτων Μαθηματικών, κάτι που είναι εύκολο να καταλάβουμε. Επειδή κάθε νέα μαθηματική γνώση χτίζεται πάνω στις προηγούμενες, είναι σημαντικό να μην αφήνονται κενά κατά την εκμάθησή τους. Για παράδειγμα, αν κάποιος δεν έχει εξοικειωθεί αρκετά με τον πολλαπλασιασμό διψήφιων αριθμών, πιθανότατα δεν θα έχει καλή διαισθητική αντίληψη ούτε για την επιμεριστική ιδιότητα. Χωρίς αυτήν, μάλλον δεν θα έχει ευχέρεια με τον πολλαπλασιασμό σε μια αλγεβρική παράσταση που περιέχει παρενθέσεις, όπως στην \( (x+1)(x-3)\) και άρα δεν θα μπορεί να καταλάβει καλά τις εξισώσεις δευτέρου βαθμού. Και τότε, ίσως να μην μπορεί να καταλάβει γιατί η χρυσή τομή είναι \( \frac{1+\sqrt{5}}{2} \).
Υπάρχουν πολλές αλυσίδες τέτοιου είδους, αλλά για να μην αφήνει κανείς κενά στα μαθηματικά δεν αρκεί να διατηρεί κάποια τεχνική ευχέρεια. Κάθε τόσο, εισάγεται μια καινούρια ιδέα που είναι πολύ σημαντική και αισθητά πιο σύνθετη από τις προηγούμενες και με κάθε τέτοια ιδέα υπάρχει το ενδεχόμενο να μείνει κανείς πίσω. Ένα παράδειγμα είναι η χρήση γραμμάτων (μεταβλητών) στη θέση των αριθμών, κάτι που μπερδεύει πολλούς, αλλά είναι κάτι θεμελιώδες για τα Μαθηματικά. Άλλα παραδείγματα είναι οι αρνητικοί αριθμοί, η τριγωνομετρία, η ύψωση σε δύναμη, οι λογάριθμοι και οι απαρχές του Απειροστικού Λογισμού της Γ΄ Λυκείου. Όσοι δεν είναι έτοιμοι να κάνουν το απαραίτητο εννοιολογικό άλμα, όταν συναντήσουν κάποια από αυτές τις ιδέες θα αισθάνονται στη συνέχεια ανασφάλεια με όλα τα Μαθηματικά που βασίζονται σε αυτή. Δεν είναι περίεργο που τα μαθήματα Μαθηματικών γίνονται, για πολλούς ανθρώπους, ένα είδος βασανιστηρίου.
Είναι όμως αυτή η κατάσταση αναπόφευκτη; Είναι απλώς κάποιοι μαθητές καταδικασμένοι να μισούν τα Μαθηματικά στο σχολείο; Ή μήπως θα ήταν δυνατόν να διδάσκεται το μάθημα διαφορετικά, με τέτοιον τρόπο ώστε να αποκλείονται τελικά από αυτό πολύ λιγότεροι μαθητές; Αν ένα παιδί λάβει από μικρή ηλικία μαθήματα μαθηματικών από κάποιον καλό και παθιασμένο δάσκαλο, θα μεγαλώσει με αγάπη για τα Μαθηματικά. Αν, επιπλέον, ο δάσκαλος είναι ικανός να διακρίνει το βαθμό ετοιμότητας των μαθητών του και να μπορεί να προσαρμόζει τη διδασκαλία του, τότε οι πιθανότητες να μισήσουν τα παιδιά αυτά τα Μαθηματικά, μειώνονται. Από αυτό, βέβαια, δεν προκύπτει άμεσα κάποια εφαρμόσιμη μέθοδος διδασκαλίας, αλλά τουλάχιστον δείχνει ότι υπάρχει περιθώριο βελτίωσης στον τρόπο διδασκαλίας των Μαθηματικών.
Κλείνοντας, ο Manil Suri, μαθηματικός και συγγραφέας, επισημαίνει εύστοχα στο άρθρο του στην εφημερίδα New York Times με τίτλο "Πώς να ερωτευτείτε τα Μαθηματικά" ότι, σε αντίθεση με όσα πιστεύουν οι περισσότεροι για τα Μαθηματικά, πολλές μαθηματικές ιδέες δεν απαιτούν ειδικές γνώσεις για να γίνουν κατανοητές και να εκτιμηθούν. "Σκεφτείτε", αναφέρει, "ότι για να εκτιμήσετε έναν πίνακα ζωγραφικής δεν είναι απαραίτητο να ξέρετε να ζωγραφίζετε, ούτε και για να απολαύσετε τη συμφωνική μουσική είναι απαραίτητο να μπορείτε να διαβάζετε παρτιτούρες".
Πηγές-Αναφορές
Gowers T. (2020). Μαθηματικά: Μια Συνοπτική Εισαγωγή. Ηράκλειο: Πανεπιστημιακές Εκδόσεις Κρήτης
Suri M. (2013). How to fall in love with math. New York Times.
Κυριακή 14 Φεβρουαρίου 2021
Δευτέρα 1 Φεβρουαρίου 2021
"Θέλω τον ζωγράφο να γνωρίζει γεωμετρία..."
«Θέλω τον ζωγράφο να έχει σπουδάσει τις ελεύθερες τέχνες, μα πάνω απ’ όλα, τον θέλω να γνωρίζει γεωμετρία. Συμφωνώ με τον αρχαίο ζωγράφο Πάμφιλο που δίδασκε ζωγραφική στους νέους και συνήθιζε να λέει πως κανένας δεν μπορούσε να γίνει καλός ζωγράφος χωρίς να ξέρει γεωμετρία. Οι αρχές που αναπτύξαμε και αποτελούν τα θεμέλια μιας ολοκληρωμένης ζωγραφικής μπορούν κατανοηθούν εύκολα από ένα γεωμέτρη. Αντίθετα, όσοι είναι ανίδεοι στην γεωμετρία δεν μπορούν να καταλάβουν ούτε τις στοιχειώδεις γνώσεις, ούτε οποιεσδήποτε άλλες αρχές της ζωγραφικής».
Σάββατο 16 Ιανουαρίου 2021
Γρίφος: Ένας περίεργος δεκαψήφιος
Σχηματίστε έναν δεκαψήφιο αριθμό, γράφοντας στις 10 θέσεις του παραπάνω σχήματος τα κατάλληλα ψηφία, ώστε το ψηφίο στη θέση "0" να δείχνει το συνολικό πλήθος των μηδενικών του αριθμού, το ψηφίο στη θέση "1" να δείχνει το συνολικό πλήθος των 1 κλπ, μέχρι τη θέση "9", το ψηφίο της οποίας πρέπει να δείχνει το συνολικό πλήθος των ψηφίων 9 στον αριθμό αυτό.
Η απάντηση είναι μοναδική.
Δευτέρα 4 Ιανουαρίου 2021
Τα Μαθηματικά στην Τέχνη: Υπερβολικό παραβολοειδές
Don Barrett (Σύγχρονος γραφίστας) - "Back In The Saddle Again" |
Joe Orlando (γεν. 1949) - "Υπερβολική Παραβολοειδής Στήλη" (γλυπτό που ολοκληρώθηκε το 1985) |
Arseniusz Romanowicz & Piotr Szymaniak - Σιδηροδρομικός Σταθμός Warszawa Ochota, Βαρσοβία (ολοκληρώθηκε το 1962) |
Le Corbusier - Ι. Ξενάκης, Philips Pavilion, Διεθνής Έκθεση Βρυξελλών, 1958 |
Le Corbusier - Ι. Ξενάκης, Philips Pavilion, Διεθνής Έκθεση Βρυξελλών |
Santiago Calatrava (γεν. 1951) - Ολυμπιακό Στάδιο Αθηνών, στέγαστρο του ΟΑΚΑ (2004) |
Santiago Calatrava (γεν. 1951) - Ολυμπιακό Στάδιο Αθηνών, στέγαστρο του ΟΑΚΑ (2004) |
Félix Candela - Restaurante "Los Manantiales", Xochimilco, México |
Félix Candela - L'Oceanographic, Valencia (σχεδιάστηκε το 1997) |
"Άρχισα να ενδιαφέρομαι για τη γεωμετρία του υπερβολικού παραβολοειδούς. Η ιδέα μιας απεριόριστης καμπύλης, η οποία δεν έχει στοιχεία καμπύλης, ήταν η έμπνευση που προκάλεσε 11 χρόνια δουλειάς. Ο πειραματισμός πάνω στην κατασκευή αυτών των επιφανειών οδήγησε τελικά στη δημιουργία της υπερβολικής παραβολοειδούς στήλης το 1985".
Joe Orlando
- Θ. Κουφογιώργος, Μαθήματα Αναλυτικής Γεωμετρίας, Τυπογραφείο Πανεπιστημίου Ιωαννίνων, 2004
- E.H. Gombrich, Το Χρονικό της Τέχνης, Μορφωτικό Ίδρυμα Εθνικής Τραπέζης, 1995
- Wassily Kandinsky, Σημείο-Γραμμή-Επίπεδο, Εκδόσεις Δωδώνη, 2013
- Wassily Kandinsky, Για το πνευματικό στην Τέχνη, Εκδόσεις Νεφέλη, 1981
- Aaron Lee Art
- Behance.net: Hyperbolic Paraboloid
- Oceanographic.org
- Pixels: Don Barrett art
- Wolfram Mathworld: Hyperbolic Paraboloid
Παρασκευή 1 Ιανουαρίου 2021
Καλώς ήρθες 2021!
- Στη σελίδα Numbermatics: The Number Explorer, αναφέρονται πολλές ιδιότητες, κυρίως αλγεβρικές.
- Στη σελίδα Numbers Aplenty, καταγράφονται περισσότερες λεπτομέρειες, κυρίως από άποψης Θεωρίας Αριθμών.
- Ο Inder J. Taneja, συνταξιούχος καθηγητής πανεπιστημίου από τη Βραζιλία, μας "στέλνει αδιάβαστους" με πολλές όμορφες παραστάσεις, ακολουθίες, μαγικά τετράγωνα και μοτίβα με τον αριθμό 2021!
Τετάρτη 30 Δεκεμβρίου 2020
Μετρώντας αντίστροφα για το 2021! (Γρίφος)
Είθισται κάθε χρόνο να σβήνουμε τα φώτα και να μετράμε αντίστροφα από το 10 κατά την αλλαγή του χρόνου...
Τοποθετήστε ανάμεσα στους αριθμούς όποια σύμβολα πράξεων θέλετε, καθώς και παρενθέσεις, ώστε η τιμή της παράστασης να είναι 2021.
Η απάντηση φυσικά δεν είναι μοναδική... Περιμένω τις απαντήσεις σας πριν κάνουμε την αντίστροφη μέτρηση για το 2021!!!
Κυριακή 27 Δεκεμβρίου 2020
Πώς να γράψουμε μαθηματικά με LaTeX στην e-class
- Κάθε ειδικός χαρακτήρας ή μαθηματικό σύμβολο ή εντολή εντός μιας πρότασης μπαίνει ανάμεσα στα σύμβολα \ ( και \ )
- Αν θέλουμε να γράψουμε μια εξίσωση ή παράσταση σε μια ολόκληρη σειρά, δίνοντάς της έμφαση, τη γράφουμε ανάμεσα στα σύμβολα \(\text{\[}\) και \(\text{\]}\)
- Κάθε εντολή πρέπει να αρχίζει με το σύμβολο \
- Κάθε αρχή πρέπει να έχει και το τέλος της (π.χ. κάθε άγκιστρο που ανοίγει ({) πρέπει και να κλείνει (}), κάθε \begin έχει \end)
- Η εισαγωγή περισσότερων κενών στο μαθηματικό κείμενο της \(\LaTeX\) δεν έχει καμία σημασία, καθώς τα απαραίτητα κενά εισάγονται αυτόματα από τη \(\LaTeX\) και τα επιπλέον κενά μπορούν να οριστούν μέσω της ειδικής εντολής \,
- Η \(\LaTeX\) αναγνωρίζει ως μεταβλητές μόνο τους αγγλικούς χαρακτήρες. Για να χρησιμοποιήσουμε ελληνικούς χαρακτήρες για μεταβλητές, χρησιμοποιούμε ειδικές εντολές οι οποίες αναφέρονται παρακάτω. Αν θέλουμε να εισαγάγουμε απλό κείμενο εντός μιας μαθηματικής έκφρασης, χρησιμοποιούμε την εντολή \text{το κείμενό μας}
- Για να αλλάξουμε γραμμή εντός των συμβόλων \ ( και \ ), δε χρησιμοποιούμε το enter, αλλά την εντολή \\
- Ο εκθέτης εισάγεται με το σύμβολο ^ (Π.χ. για το \( x^2 \) θα γράψουμε x^2)
- Ο δείκτης εισάγεται με το σύμβολο _ (Π.χ. για το \( A_f \) θα γράψουμε A_f)
- Για την εισαγωγή κλασμάτων χρησιμοποιούμε την εντολή \frac{αριθμητής}{παρονομαστής}. Για παράδειγμα, για το κλάσμα \( \frac{\pi}{2} \) θα γράψουμε \frac{\pi}{2}
- Για την εισαγωγή τετραγωνικής ρίζας χρησιμοποιούμε την εντολή \sqrt, ενώ για τη νιοστή ρίζα χρησιμοποιούμε την εντολή \sqrt[n]. Για παράδειγμα, για την \( \sqrt{x+y} \) θα γράψουμε \sqrt{x+y}. Για την \( \sqrt[3]{2} \) θα γράψουμε \sqrt[3]{2}.
- Για οριζόντια άγκιστρα κάτω από μια μαθηματική έκφραση, χρησιμοποιούμε την εντολή \underbrace ακολουθούμενη από {...}. Π.χ. για τη γραφή \(\underbrace{ \alpha \cdot \alpha \cdot \ldots \cdot \alpha}_{\text{ν παράγοντες}} \) γράφουμε τις εντολές: \underbrace{ \alpha \cdot \alpha \cdot \ldots \cdot \alpha}_{\text{ν παράγοντες}}
- Για την εισαγωγή διανύσματος με μία μεταβλητή, γράφουμε την εντολή \vec ακολουθούμενη από τη μεταβλητή μέσα σε άγκιστρα. Π.χ. για το διάνυσμα \( \vec{\alpha} \), γράφουμε \vec{\alpha}
- Για την εισαγωγή διανύσματος με αρχή το Α και πέρας το Β, δηλαδή του \( \overrightarrow{AB} \) χρησιμοποιούμε την εντολή \overrightarrow ακολουθούμενη από {ΑΒ} (με λατινικούς χαρακτήρες).
- Για το σύμβολο της γωνίας με κορυφή το Α, δηλαδή το \( \hat{A}\), γράφουμε την εντολή \hat{A}
- Για τις μοίρες, μπορούμε να γράψουμε π.χ. 90^{\circ}
- Για να εισαγάγουμε μια ορίζουσα 2x2, χρησιμοποιούμε την εντολή vmatrix, όπως φαίνεται παρακάτω:
- Για να εισαγάγουμε μια συνάρτηση διπλού ή πολλαπλού τύπου, ή σύστημα εξισώσεων, χρησιμοποιούμε την εντολή cases, όπως φαίνεται στα ακόλουθα παραδείγματα:
- Άθροισμα και ολοκλήρωμα ορίζονται με τις εντολές \sum και \int αντίστοιχα. Για το κάτω όριο χρησιμοποιούμε το _ και για το άνω όριο το ^. Π.χ. \sum_{i=1}^{n} και \int_{0}^{1}
- Για τo όριο καθώς το \(x\) τείνει στο \( x_0 \) (ή στο άπειρο κλπ) χρησιμοποιούμε την εντολή \lim_{x \to x_0} (ή \lim_{x \to \infty} αντίστοιχα)
- Για το λογάριθμο με βάση α, θα χρειαστούμε την εντολή \log_a\theta
- Παρενθέσεις, αγκύλες και άγκιστρα εισάγονται με τα γνωστά σύμβολα του πληκτρολογίου. Αν όμως τα θέλουμε μεγαλύτερα, π.χ. όταν περιέχουν ένα κλάσμα, τότε υπάρχουν οι εντολές \big( \Big( \bigg( \Bigg( \big) \Big) \bigg) \Bigg), \big[ \Big[ \bigg[ \Bigg[ \big] \Big] \bigg] \Bigg], \big{ \Big{ \bigg{ \Bigg{ \big} \Big} \bigg} \Bigg}