Εμφάνιση αναρτήσεων με ετικέτα ατάκες κι αποφθέγματα. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα ατάκες κι αποφθέγματα. Εμφάνιση όλων των αναρτήσεων

Τετάρτη 17 Ιουνίου 2020

"Η νίκη αγαπά την προετοιμασία"


Μία ακόμη σχολική χρονιά, ίσως λίγο πιο... περιπετειώδης από τις προηγούμενες, έφτασε στο τέλος της. Τα παιδιά είναι οι μικροί μου μεγάλοι ήρωες.

Άπειρη εξάσκηση, αυτοπεποίθηση και πίστη στον εαυτό σας... Αυτό είναι το τρίπτυχο της επιτυχίας!
Καλή επιτυχία σε όλους τους μαθητές που δίνουν Πανελλαδικές Εξετάσεις!



*~∞~*~∞~*~∞~*

"Amat victoria curam" ("Η νίκη αγαπά την προετοιμασία").
Gaius Victorius Catullus (1ος αιώνας π.Χ.) 

Πέμπτη 11 Ιουνίου 2020

Πώς να λύσουμε ένα πρόβλημα;


"Μια μεγάλη ανακάλυψη λύνει ίσως ένα μεγάλο πρόβλημα, μπορούμε να πούμε όμως ότι πίσω από τη λύση κάθε προβλήματος κρύβεται και μια μικρή ανακάλυψη. Το πρόβλημά σας μπορεί να είναι απλό. Αλλά αν προκαλεί την περιέργειά σας και ενεργοποιεί τις εφευρετικές σας ικανότητες και, αν το λύσετε μόνοι σας, τότε ίσως να δοκιμάσετε την ένταση και να απολαύσετε τον θρίαμβο της ανακάλυψης..."

Ο George Polya έφερε στο φως αγνοημένες αντιλήψεις, μοντέλα και στρατηγικές και, απευθυνόμενος ταυτόχρονα στο δάσκαλο και τον μαθητή, περιέγραψε τα στάδια επίλυσης ενός προβλήματος και έδωσε μεγάλο πλήθος μεθόδων επίλυσης προβλημάτων.




Τα 4 στάδια επίλυσης προβλήματος κατά τον Polya είναι:

1. Κατανόηση προβλήματος
Καθορίζονται τα δεδομένα, οι συνθήκες και ο άγνωστος του προβλήματος.

2. Κατάστρωση σχεδίου επίλυσης
Το στάδιο αυτό είναι ιδιαίτερα κρίσιμο, καθώς η κατάστρωση ενός σχεδίου ενδέχεται να είναι μια χρονοβόρα διαδικασία. Συχνά οι προσπάθειες μπορεί να αποτύχουν και θα χρειαστεί οι μαθητές να δοκιμάσουν αρκετά διαφορετικά σχέδια επίλυσης μέχρι να καταλήξουν σε μια αποτελεσματική μέθοδο.

3. Εφαρμογή του σχεδίου
Το στάδιο αυτό θεωρείται από τον Polya πιο εύκολο από τα προηγούμενα. Οι μαθητές χρειάζονται κυρίως υπομονή, ώστε να εφαρμόσουν σωστά το σχέδιό τους.

4. Κοιτάζοντας πίσω
Το τελευταίο στάδιο θεωρείται πολύ σημαντικό, καθώς συμβάλλει στην ικανότητα επίλυσης προβλημάτων και δεν πρέπει να παραλείπεται.



Αναστοχαστικές δράσεις των μαθητών ανά στάδιο επίλυσης προβλήματος

1.
  • Ξέρω ποιος είναι ο άγνωστος του προβλήματος;
  • Ξέρω ποια είναι τα δεδομένα και οι συνθήκες που εμπλέκονται στο πρόβλημα;

2.
  • Μπορώ να κάνω ένα σχήμα ή κάποιο σχέδιο;
  • Έχω ξαναδεί το ίδιο ή παρόμοιο ή σχετικό πρόβλημα προηγουμένως;
  • Ξέρω ένα σχετικό θεώρημα/μαθηματικό τύπο που μπορώ να χρησιμοποιήσω;
  • Θα μπορούσα να λύσω ένα ανάλογο απλούστερο πρόβλημα;

3.
  • Είναι η σωστή η πορεία μου μέχρι τώρα;
  • Πώς μπορώ να ελέγξω αν αυτό που έκανα είναι σωστό;

4.
  • Τι έμαθα λύνοντας αυτό το πρόβλημα;



Αναστοχαστικές δράσεις του εκπαιδευτικού ανά στάδιο επίλυσης προβλήματος

1.
  • Κατανόησε ο μαθητής τα δεδομένα και τα ζητούμενα του προβλήματος;
  • Μπορεί ο μαθητής να επαναδιατυπώσει το πρόβλημα με δικά του λόγια;
  • Υπάρχουν παρερμηνείες ή αδυναμίες σχετικά με το περιεχόμενο του προβλήματος;

2.
  • Έχει αναπτύξει ο μαθητής κάποιο σχέδιο;
  • Πώς μπορώ να τον συμβουλεύσω χωρίς να του δώσω την απάντηση;
  • Υπάρχουν πληροφορίες που θα μπορούσα να του συστήσω να αναζητήσει;
  • Πώς θα μπορούσα να τον βοηθήσω να κάνει συνδέσεις με ένα παρόμοιο ή σχετικό πρόβλημα;
  • Πώς θα μπορούσα να τον βοηθήσω να λάβει υπόψη του όλα τα δεδομένα αλλά και τις βασικές έννοιες που εμπλέκονται;
  • Μπορώ να τον βοηθήσω να κάνει εικασίες σχετικά με τη λύση;
  • Μπορώ να του ζητήσω να σχεδιάσει μια πορεία λύσης;

3.
  • Τι ερωτήσεις θα μπορούσα να του απευθύνω κατά την εκτέλεση του σχεδίου, ώστε να βεβαιωθώ ότι το σχέδιό του μπορεί να τον οδηγήσει στη λύση;
  • Έχει ελέγξει ο μαθητής το αποτέλεσμα που βρήκε με έναν κατάλληλο και πειστικό τρόπο;

4.
  • Πώς θα μπορούσε να χρησιμοποιήσει το αποτέλεσμα, την κεντρική ιδέα, τη μέθοδο ή τη στρατηγική για ένα μελλοντικό πρόβλημα;
  • Πώς μπορώ να κάνω το πρόβλημα πιο γενικό;
  • Πώς μπορώ να κάνω το πρόβλημα πιο ρεαλιστικό;
  • Μπορεί ο μαθητής να βρει και άλλους τρόπους λύσης;
  • Τι έμαθε ο μαθητής λύνοντας αυτό το πρόβλημα;



Μερικές από τις στρατηγικές επίλυσης προβλημάτων, σύμφωνα με τη διδασκαλία του Polya, είναι οι παρακάτω:




Στο βίντεο που ακολουθεί, που τραβήχτηκε γύρω στο 1975 με 1980, ο Polya εξηγεί στους φοιτητές τις παραπάνω στρατηγικές μέσα από την προσπάθεια επίλυσης ενός γεωμετρικού προβλήματος στον τρισδιάστατο χώρο. Μας παροτρύνει να προσπαθούμε να απλουστεύσουμε το πρόβλημα, να παρατηρούμε, να φτιάχνουμε σχήματα, να εντοπίζουμε αναλογίες, να βρίσκουμε μοτίβα και να κάνουμε αιτιολογημένες εικασίες, έπειτα να ελέγχουμε αν οι εικασίες μας είναι ορθές και αν δεν είναι να συνεχίζουμε με άλλο τρόπο... Αξίζει να το παρακολουθήσει κάθε εκπαιδευτικός που διδάσκει Μαθηματικά!




.~*~.~*~.~*~.~*~.~*~.~*~
"Διδασκαλία είναι το να δίνεις την ευκαιρία στους μαθητές να ανακαλύπτουν πράγματα μόνοι τους".
George Polya (1887-1985)
.~*~.~*~.~*~.~*~.~*~.~*~


Πηγές
Polya, G. (1998). Πώς να το λύσω; (3η έκδ.) Αθήνα: Καρδαμίτσα (Το πρωτότυπο έργο δημοσιεύθηκε το 1945).
Schoenfeld, H. (1992). Learning to think mathematically: Problem-solving, metacognition and sense making in mathematics. Handbook of research on mathematics teaching and learning (pp. 334-368). New York: MacMillan.

Δευτέρα 1 Ιουνίου 2020

Τα Μαθηματικά στην Τέχνη: Ελλειψοειδές


Τα βιβλία γράφουν...

Το ελλειψοειδές είναι μια τετραγωνική επιφάνεια, δηλαδή αλγεβρική επιφάνεια 2ου βαθμού. Είναι κλειστή και πεπερασμένη επιφάνεια, με τρία επίπεδα συμμετρίας, που είναι ανά δύο κάθετα μεταξύ τους. Στη γενική περίπτωση, κάθε επίπεδο συμμετρίας τέμνει την επιφάνεια σε έλλειψη, γεγονός που δικαιολογεί και το όνομα "ελλειψοειδές". Στην περίπτωση που ένα από τα επίπεδα συμμετρίας τέμνει την επιφάνεια κατά κύκλο, τότε η επιφάνεια λέγεται ελλειψοειδές εκ περιστροφής, δηλαδή προκύπτει από την περιστροφή μιας έλλειψης γύρω από άξονα. Ο άξονας περιστροφής του ελλειψοειδούς θα είναι ευθεία κάθετη στο επίπεδο του κύκλου και θα διέρχεται από το κέντρο του. Όταν και τα τρία επίπεδα συμμετρίας τέμνουν το ελλειψοειδές κατά κύκλους, τότε το ελλειψοειδές είναι η σφαίρα.

Το ελλειψοειδές εκ περιστροφής είναι το σχήμα της Γης, με άξονα περιστροφής τον άξονα Βορρά-Νότου και μέγιστο κύκλο τον Ισημερινό.


Το κτίριο "αβγό του δεινοσαύρου
Το κτίριο "αβγό του δεινοσαύρου", σχεδιασμένο από τον αρχιτέκτονα Kisho Kurokawa αποτελεί μέρος του Μουσείου Δεινοσαύρων στο Fukui της Ιαπωνίας. 

Το κτίριο "αβγό του δεινοσαύρου
Το "αβγό του δεινοσαύρου" έχει σχήμα ελλειψοειδούς και το όνομα που του δόθηκε είναι απόλυτα εύστοχο!

ο "Fuefukigawa Fruits Park Museum" στην Ιαπωνία, σχεδιάστηκε από τους αρχιτέκτονες Itsuko Hasegawa και Kenchiku Keikaku Kobo
Το "Fuefukigawa Fruits Park Museum" στην Ιαπωνία, σχεδιάστηκε από τους αρχιτέκτονες Itsuko Hasegawa και Kenchiku Keikaku Kobo και χτίστηκε το 1995.


.*.~.*.~.*.~.*.~.*.~.*

"Τα μοτίβα των μαθηματικών, όπως των ζωγράφων ή των ποιητών, πρέπει να είναι όμορφα. Οι ιδέες, όπως τα χρώματα και οι λέξεις, πρέπει να συνδέονται μεταξύ τους με έναν αρμονικό τρόπο".
G.H. Hardy

.*.~.*.~.*.~.*.~.*.~.*


Πηγές:
  • Θ. Κουφογιώργος, Μαθήματα Αναλυτικής Γεωμετρίας, Τυπογραφείο Πανεπιστημίου Ιωαννίνων, 2004
  • E.H. Gombrich, Το Χρονικό της Τέχνης, Μορφωτικό Ίδρυμα Εθνικής Τραπέζης, 1995
  • Wassily Kandinsky, Σημείο-Γραμμή-Επίπεδο, Εκδόσεις Δωδώνη, 2013
  • Wassily Kandinsky, Για το πνευματικό στην Τέχνη, Εκδόσεις Νεφέλη, 1981
  • H.L.C Jaffe, Η ζωγραφική στον 20ό αιώνα, Εκδόσεις Νεφέλη, 1984
  • ALOSS: Fuefukigawa Fruits Park Museum
  • Wikipedia: Ellipsoid
  • Wolfram Mathworld: Ellipsoid
  • World Architecture

Κυριακή 5 Απριλίου 2020

Τα Μαθηματικά στην Τέχνη: Σφαίρα και σφαιρικά πολύεδρα


ΣΦΑΙΡΑ

Τα βιβλία γράφουν...

Σφαίρα είναι το σχήμα που παράγεται από την περιστροφή ενός κύκλου (Ο, ρ) με άξονα περιστροφής μια διάμετρό του.


Τα βιβλία επίσης γράφουν...

Σφαίρα είναι το σύνολο των σημείων Μ του χώρου που απέχουν από ένα σταθερό σημείο Ο σταθερή απόσταση ρ, δηλαδή ισχύει:
ΟΜ = ρ.

Rene Magritte (1898 - 1967)

Rene Magritte (1898 - 1967) - "L'ombre Monumentale" (1932)

Ivan Kliun (1873- 1943) - "Σφαιρική μη αντικειμενική σύνθεση" (1922-25)

A.J. Edwards (Σύγχρονος καλλιτέχνης) - "Game Room"

Barbara Fox (Σύγχρονη ζωγράφος) - "Billiard Balls - Still Life"

Georgi Lechev (Σύγχρονος καλλιτέχνης) - "Dialog Between White and Blue" (2011)

Allen Donnelly (Σύγχρονος καλλιτέχνης και συγγραφέας) - "On the beach"

James Pikerton (σύγχρονος ζωγράφος) - "Shadow Spheres" (2015)

James Pikerton (σύγχρονος ζωγράφος) - "Sphere Orb"

James Pikerton (σύγχρονος ζωγράφος) - "Red Sphere"

Katie Morris (Σύγχρονη ζωγράφος και καθηγήτρια καλλιτεχνικών) - "Sports Spheres"
Μέσα από τις καλλιτεχνικές δραστηριότητες στη σχολική τάξη, προσπαθεί να διδάξει στους μαθητές της τα γεωμετρικά σχήματα και τα γεωμετρικά στερεά. 

Katie Morris (Σύγχρονη ζωγράφος και καθηγήτρια καλλιτεχνικών) - "Sports Spheres"

Katie Morris (Σύγχρονη ζωγράφος και καθηγήτρια καλλιτεχνικών) - "Sports Spheres"

Katie Morris (Σύγχρονη ζωγράφος και καθηγήτρια καλλιτεχνικών) - "Sports Spheres"

Katie Morris (Σύγχρονη ζωγράφος και καθηγήτρια καλλιτεχνικών) - "Sports Spheres"

Katie Morris (Σύγχρονη ζωγράφος και καθηγήτρια καλλιτεχνικών) - "Sports Spheres"

Russell Kightley (Σύγχρονος καλλιτέχνης) - "Sphere Equations"



Τι γίνεται όταν επιτρέψουμε στα πολύεδρα να έχουν καμπυλωτές ακμές και έδρες;


ΣΦΑΙΡΙΚΑ ΠΟΛΥΕΔΡΑ

Τα βιβλία γράφουν...

Η επιφάνεια της σφαίρας μπορεί να χωριστεί με ευθύγραμμα τμήματα σε οριοθετούμενες περιοχές, για να σχηματίσει ένα σφαιρικό πολύεδρο. Μεγάλο μέρος της θεωρίας των συμμετρικών πολυέδρων προκύπτει ευκολότερα με αυτόν τον τρόπο. Τα σφαιρικά πολύεδρα έχουν μια μακρά και αξιοσέβαστη ιστορία. Ο Poinsot, χρησιμοποιώντας σφαιρικά πολύεδρα, ανακάλυψε τα τέσσερα κανονικά αστεροειδή πολύεδρα. Τα πρώτα πολύεδρα που κατασκεύασε ο άνθρωπος ήταν σφαιρικά πολύεδρα σκαλισμένα σε πέτρα.


Paolo Uccello (1397 - 1475) - "Γεωμετρική Σφαίρα"


Martino da Udine (1470 - 1548) - Σπουδή στη Γεωμετρία και στην προοπτική



.*.〰.*.〰.*.〰.*.〰.*.〰.*.〰.*.

"Μεταχειρίσου τη φύση μέσω του κυλίνδρου, της σφαίρας και του κώνου, όλα τοποθετημένα με προοπτική, ώστε κάθε πλευρά ενός αντικειμένου ή ενός επιπέδου να κατευθύνεται προς ένα κεντρικό σημείο. Αν μάθουμε να βασίζουμε τη ζωγραφική μας πάνω σ' αυτά τα απλά σχήματα, θα μπορέσουμε να πετύχουμε τα πάντα".
Paul Cezanne (1839 - 1906)

.*.〰.*.〰.*.〰.*.〰.*.〰.*.〰.*.


Πηγές:

Τρίτη 7 Ιανουαρίου 2020

Ο Paul Halmos και οι χειραψίες της... γυναίκας του


Το 1991, ο Paul Halmos στο βιβλίο του "Problems for Mathematicians, Young and Old", που όπως χαρακτηριστικά ανέφερε "έγραψε για το κέφι του", θέτει -μεταξύ πολλών άλλων- το παρακάτω πρόβλημα συνδυαστικής:


Η γυναίκα μου κι εγώ ήμασταν προσκεκλημένοι σε ένα πάρτι με άλλα τέσσερα ζευγάρια, συνολικά δέκα άτομα. Σε κάθε άφιξη είχαμε χειραψίες απρόβλεπτες σε αριθμό, με τις εξής δύο προφανείς προϋποθέσεις: κανένα πρόσωπο δεν ανταλλάσσει χειραψίες με τον εαυτό του ή με το ταίρι του. Στο τέλος, μου κινήθηκε η περιέργεια και ρώτησα το ίδιο πράγμα σε όλους τους παρόντες. "Πόσα χέρια έσφιξες; ... Κι εσύ; ... Κι εσύ"; Ρώτησα εννέα άτομα (όλους, συμπεριλαμβανομένης της γυναίκας μου) και δηλώνω υπευθύνως ότι έλαβα εννέα διαφορετικές απαντήσεις.

Πόσες χειραψίες αντάλλαξε η γυναίκα μου;


Ο Paul Halmos το 1980
Ο Paul Halmos γύρω στο 1980


Για τους φίλους που αγαπάνε να λύνουν γρίφους και προβλήματα, περιμένω τις απαντήσεις στα σχόλια!


"Ο Θεός κρατάει μυστικά από εμάς
και έχει πλάκα να προσπαθούμε να μάθουμε μερικά από αυτά".
Paul Halmos (1916 - 2006)

Τετάρτη 1 Ιανουαρίου 2020

Καλώς όρισες 2020!


Το ιστολόγιο "eis to apeiron" εύχεται με... τον δικό του τρόπο... Καλή Χρονιά και ευτυχισμένο το 2020!!!



"Αν δεν είναι όμορφοι οι αριθμοί, τότε δεν ξέρω τι είναι όμορφο..."
Paul Erdos (1913 - 1996)

Δευτέρα 23 Δεκεμβρίου 2019

Δυσαριθμησία: Μέρος 3º - Αποτελεσματική παρέμβαση


Στο πρώτο μέρος αυτής της σειράς άρθρων, περιγράφεται η δυσαριθμησία ως ειδική μαθησιακή δυσκολία και τονίζεται η σημασία της προληπτικής διδασκαλίας. Στο δεύτερο μέρος αναλύονται τα προειδοποιητικά σημάδια σχετικά με την πιθανή ύπαρξη δυσαριθμησίας και δίνονται κάποιες πληροφορίες σχετικά με τη διαδικασία της διάγνωσης. Αυτό είναι το τρίτο και τελευταίο μέρος, όπου θα προσπαθήσω να περιγράψω, χωρίς να γίνω κουραστική, διάφορες μεθόδους παρέμβασης που εφαρμόζονται προκειμένου να καταφέρει ο μαθητής με δυσαριθμησία να υπερβεί τις δυσκολίες του. Πολλές από τις μεθόδους που αναφέρονται, είμαι σίγουρη ότι βοηθάνε όλα τα παιδιά να μάθουν μαθηματικά, είτε έχουν μαθησιακές δυσκολίες είτε όχι.

Αποτελεσματική παρέμβαση


Μετά την οικεία διάγνωση, πρέπει να παρέχεται στο παιδί με δυσαριθμησία ένα πρόγραμμα παρέμβασης ειδικά σχεδιασμένο για αυτό. Επειδή το παρόν τυπικό εκπαιδευτικό σύστημα δεν είναι συμβατό με τον τρόπο με τον οποίο μαθαίνουν τα παιδιά με δυσαριθμησία, χρειάζεται εξατομικευμένη μεταχείριση από ειδικό, φιλική προς το μαθησιακό στυλ του παιδιού. Αξίζει να τονιστεί ότι η δυσαριθμησία δεν είναι ένα πρόβλημα ή μια πάθηση ώστε να ψάχνουμε θεραπεία. Δεν περιμένουμε η δυσαριθμησία να "φύγει", αλλά βοηθάμε το παιδί να συμφιλιωθεί μαζί της, του διδάσκουμε τρόπους να την υπερβεί και να αναπτύξει τους δικούς του μηχανισμούς ώστε να κάνει σωστά τις μαθηματικές πράξεις και να επιλύει προβλήματα μαθηματικής φύσεως.

Μέσα από το εξατομικευμένο πρόγραμμα παρέμβασης:
  • Γίνεται αγωγή προσανατολισμού. Μόλις οι μαθητές βεβαιωθούν μέσω του προσανατολισμού ότι η αντίληψή τους είναι σωστή, θα είναι σε θέση να υπερβαίνουν τις αριθμητικές τους δυσκολίες με μη παραδοσιακές μεθόδους, οι οποίες θα βασίζονται στις οπτικοχωρικές τους δεξιότητες, στη φαντασία τους και στη δημιουργικότητά τους.
  • Αξιοποιείται η πολυαισθητηριακή μέθοδος διδασκαλίας, σύμφωνα με την οποία το παιδί πρέπει να δει, να ακούσει και να αισθανθεί έναν αριθμό. 
  • Διδάσκονται οι τέσσερις βασικές πράξεις με χρήση αντικειμένων, όπως μεζούρα, κέρματα, τραπουλόχαρτα, ξυλομπογιές, πλαστελίνη κλπ. βάση του οπτικού και του κιναισθητικού στυλ μάθησης που έχουν πολλά παιδιά.
  • Πραγματοποιείται ουσιαστική εκμάθηση της προπαίδειας με μη συμβατικούς τρόπους.
  • Επιλύονται τα μαθηματικά προβλήματα αφού πρώτα οπτικοποιηθούν σε μια εικόνα ή ένα σχήμα.
  • Τονώνεται η αυτοπεποίθηση του παιδιού μέσα από διαρκείς επιβραβεύσεις των προσπαθειών του.
  • Γίνεται διδασκαλία των Μαθηματικών μέσα από εφαρμογές στη σύγχρονη καθημερινότητα (ίντερνετ, βιντεοπαιχνίδια, GPS κλπ) και με χρήση των Νέων Τεχνολογιών.
  • Μέσα από το παιχνίδι, μπορούμε πολύ συχνά να πάρουμε αφορμή για τη διδασκαλία μιας μαθηματικής έννοιας. 

Διδάσκουμε στο παιδί ότι μια πρόσθεση έχει δύο αντίστοιχες αφαιρέσεις, όχι με τον κλασικό γραπτό τρόπο, αλλά με αριθμούς από μαγνητάκια πάνω σε μεταλλικό πίνακα. Σύμφωνα με την πολυαισθητηριακή μέθοδο, το παιδί αγγίζει τους αριθμούς και τους αισθάνεται ως κάτι απτό και όχι ως μια αφηρημένη έννοια. Έτσι, αντιλαμβάνεται ότι ο ίδιος αριθμός που ήταν στο ρόλο του αθροίσματος (το 15) γίνεται έπειτα αφαιρετέος.
Διδάσκουμε στο παιδί ότι μια πρόσθεση έχει δύο αντίστοιχες αφαιρέσεις, όχι με τον κλασικό γραπτό τρόπο, αλλά με αριθμούς από μαγνητάκια πάνω σε μεταλλικό πίνακα. Σύμφωνα με την πολυαισθητηριακή μέθοδο, το παιδί αγγίζει τους αριθμούς και τους αισθάνεται ως κάτι απτό και όχι ως μια αφηρημένη έννοια. Έτσι, αντιλαμβάνεται ότι ο ίδιος αριθμός που ήταν στο ρόλο του αθροίσματος (το 15) γίνεται έπειτα αφαιρετέος.  


Σύμφωνα πάλι με την πολυαισθητηριακή μέθοδο, διδάσκουμε τον πολλαπλασιασμό χρησιμοποιώντας ένα πλήθος όμοιων αντικειμένων (εδώ: 12 χάντρες). Σ' αυτή την περίπτωση οι αριθμοί μπορούν να μη γράφονται με τα σύμβολά τους, αλλά να παριστάνονται μόνο μέσα από το πλήθος των χαντρών. Έτσι, το παιδί με δυσαριθμησία δεν θα μπερδεύεται. Το παιδί, αξιοποιώντας τις οπτικοχωρικές του δεξιότητες, πρέπει να τοποθετήσει τις χάντρες με μια συγκεκριμένη σειρά (3x4 ή 2x6) και έπειτα να διαπιστώσει ότι καθένα από τα δύο γινόμενα ισούται με 12.
Σύμφωνα πάλι με την πολυαισθητηριακή μέθοδο, διδάσκουμε τον πολλαπλασιασμό χρησιμοποιώντας ένα πλήθος όμοιων αντικειμένων (εδώ: 12 χάντρες). Σ' αυτή την περίπτωση οι αριθμοί μπορούν να μη γράφονται με τα σύμβολά τους, αλλά να παριστάνονται μόνο μέσα από το πλήθος των χαντρών. Έτσι, το παιδί με δυσαριθμησία δεν θα μπερδεύεται. Το παιδί, αξιοποιώντας τις οπτικοχωρικές του δεξιότητες, πρέπει να τοποθετήσει τις χάντρες με μια συγκεκριμένη σειρά (3x4 ή 2x6) και έπειτα να διαπιστώσει ότι καθένα από τα δύο γινόμενα ισούται με 12.



Αναγωγή στην κλασματική μονάδα με τις ξυλομπογιές; Για να υπολογίσει ο μικρός μαθητής πόσο είναι το 1/4 του 20, χωρίζουμε τις 20 ξυλομπογιές του σε 4 ομάδες, με την κάθε ομάδα να αποτελείται από 5 ξυλομπογιές.
Αναγωγή στην κλασματική μονάδα με τις ξυλομπογιές;
Για να υπολογίσει ο μικρός μαθητής πόσο είναι το 1/4 του 20, χωρίζουμε τις 20 ξυλομπογιές του σε 4 ομάδες, με την κάθε ομάδα να αποτελείται από 5 ξυλομπογιές. 


Αυτή η εξατομίκευση της διδασκαλίας, η καθημερινή εξάσκηση και οι στοχευμένες διδακτικές εμπειρίες εφοδιάζουν το παιδί με τα κατάλληλα εργαλεία που το βοηθούν να μάθει να χειρίζεται σωστά τους αριθμούς με τον δικό του, μοναδικό τρόπο.



"Κάθε παιδί μπορεί να μάθει και να αγαπήσει τα μαθηματικά, αρκεί να τα διδαχτεί με τον τρόπο που του ταιριάζει,αξιοποιώντας τα δυνατά του σημεία".
(Ιωάννης Καραγιαννάκης) 


Βιβλιογραφία
Αγαλιώτης, Ι. (2000). Μαθησιακές Δυσκολίες στα Μαθηματικά. Αιτιολογία, αξιολόγηση, αντιμετώπιση. Αθήνα: Ελληνικά Γράμματα.
Hannel, G. (2013) (2nd edition). Dyscalculia: Action plans for successful learning in Mathematics. New York: Routledge.
Karagiannakis, G., & Baccaglini-Frank, A. (2014). The De-Di-Ma battery: A tool for identifying students' mathematical learning profiles. Health Psychology Review, 2(4), 291-297.
Rousselle, L., & Noel. M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361-395.
ΣτασινόςΔ. (2003) (Επιμ). Μαθησιακές δυσκολίες του παιδιού και του εφήβου. Η εμπειρία της σύγχρονης Ευρώπης. Αθήνα: Gutenberg.
Shams. L. & Seitz, A. R. (2008). Benefits of Multisensory Learning. Trends in Cognitive Sciences, 12(11), 411-417.
Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. Human behavior, learning and the developing brain: Atypical development, 2, 212-237.
Σημειώσεις από τα βιωματικά σεμινάρια του δρ. Καραγιαννάκη Ιωάννη: "Δυσαριθμησία: Στρατηγικές αντιμετώπισης των μαθησιακών δυσκολιών στα Μαθηματικά μαθητών πρωτοβάθμιας και δευτεροβάθμιας εκπαίδευσης" (17/10/2015) & "Αντιμετώπιση των δυσκολιών στα Μαθηματικά με έξυπνο τρόπο" (20/05/2017), Διεπιστημονικό Κέντρο Ηπείρου, Ιωάννινα.

Δευτέρα 2 Σεπτεμβρίου 2019

Ποιοι είναι οι μαθητές μου;

Μαθησιακά προφίλ και προσαρμογή της διδασκαλίας



   Ο Άλμπερτ Αινστάιν συχνά ονειροπολούσε μέσα στο μάθημα, ενώ πιστεύεται από πολλούς ότι αντιμετώπιζε ειδικές μαθησιακές δυσκολίες. Ο Τόμας Έντισον, όντας ανήσυχο πνεύμα, είχε τιμωρηθεί τόσες πολλές φορές από τους δασκάλους του, που η μητέρα του αναγκάστηκε να τον κρατήσει μακριά από το σχολείο. Ο Δαρβίνος, ο Λεονάρντο vτα Βίντσι και η Αγκάθα Κρίστι είναι ακόμη μερικά παραδείγματα ανθρώπων που οι μαθησιακές δυσκολίες τους συντρόφευαν σε ολόκληρη τη ζωή τους. Παρόλα αυτά, όλοι τους έχουν αφήσει παντοτινά το στίγμα τους στην παγκόσμια ιστορία της επιστήμης και της τέχνης.

μαθητές μέσα στη σχολική αίθουσα

   Κάθε παιδί, είτε αντιμετωπίζει μαθησιακές δυσκολίες είτε όχι, έχει διαφορετικά ταλέντα, διαφορετικές ανάγκες, διαφορετικό τρόπο έκφρασης και διαφορετικό μαθησιακό στυλ. Με τον όρο «μαθησιακό στυλ» εννοούμε τον τρόπο με τον οποίο οι άνθρωποι συγκεντρώνουν, κατανοούν και συγκρατούν καινούριες πληροφορίες. Έτσι, κάθε παιδί είναι μοναδικό, όπως μοναδικός είναι και ο τρόπος με τον οποίο κατακτά τη γνώση. Κάποιοι μαθητές νιώθουν εξοικειωμένοι με τη χρήση εικόνων και γραφικών παραστάσεων, άλλοι είναι άνετοι κατά την ακρόαση διαλέξεων ή στις ομαδικές συζητήσεις, άλλοι προτιμούν τη μάθηση μέσα από την ανάγνωση ή την αντιγραφή κειμένων, ενώ άλλοι αποδίδουν καλύτερα κατά την ενεργητική μάθηση και κατανοούν τις πληροφορίες που προσλαμβάνουν μέσα από πρακτικές δραστηριότητες. Υπάρχουν τέσσερις βασικοί τύποι μάθησης όσον αφορά τον αισθητηριακό τομέα: ο οπτικός, ο ακουστικός, ο αναγνωστικός/λεκτικός, και ο κιναισθητικός. Ο προσωπικός τρόπος μάθησης του κάθε παιδιού αποτελεί συνδυασμό των παραπάνω τύπων.
   Κατά την εκπαίδευση των μαθητών μας, λοιπόν, οι ειδικοί επιστήμονες συστήνουν δοκιμασμένους τρόπους για το πώς μπορούμε να προσαρμόσουμε τη διδασκαλία του μαθήματος, σύμφωνα με  τις ατομικές ικανότητες των παιδιών και να επιστρατεύσουμε εναλλακτικές μεθόδους διδασκαλίας. Απαιτείται να λαμβάνουμε υπόψη μας το βαθμό ετοιμότητας των μαθητών, τα ενδιαφέροντά τους και το μαθησιακό τους στυλ καθώς διαφοροποιούμε τη διδασκαλία. Έχει αποδειχθεί, επίσης, ότι οι μαθητές έχουν καλύτερη επίδοση και πιο θετική στάση αν διδάσκονται με τρόπους που μπορούν να κατανοήσουν πιο εύκολα.
   Κλείνοντας, δεν υπάρχει ένας συγκεκριμένος τρόπος διδασκαλίας, ούτε ένας συγκεκριμένος τρόπος μάθησης. Γι’ αυτό οφείλουμε να ενθαρρύνουμε τα παιδιά να δοκιμάζουν διάφορες τεχνικές, μέχρι να βρουν την πιο κατάλληλη για αυτά και σε καμία περίπτωση να μην τα αναγκάζουμε να εφαρμόζουν αποκλειστικά τις μεθόδους με τις οποίες είμαστε οι ίδιοι εξοικειωμένοι. Στην τελική, όλοι βγαίνουν κερδισμένοι, αφού θα διαπιστώσουμε πόσα πράγματα μπορούμε να μάθουμε διδάσκοντας τα παιδιά.


«Αν το παιδί δεν μπορεί να μάθει με τον τρόπο που το διδάσκουμε,
τότε πρέπει να το διδάξουμε με τον τρόπο που μπορεί να μάθει».
(Μαρία Μοντεσσόρι)


*~.~*~.~*~.~*




Βιβλιογραφία
Reid, M. J. (1995). Learning styles in the ESL/ EFL classroom. Boston: Heinle & Heinle.
Στασινός, Δ. (2003) (Επιμ). Μαθησιακές δυσκολίες του παιδιού και του εφήβου. Η εμπειρία της σύγχρονης Ευρώπης. Αθήνα: Gutenberg.
Tomlinson, C.A. (2010). Διαφοροποίηση της Εργασίας στην Αίθουσα Διδασκαλίας: Ανταπόκριση στις Ανάγκες Όλων των Μαθητών (Μτφρ. X. Θεοφιλίδης). Αθήνα: Γρηγόρη.

Τετάρτη 21 Αυγούστου 2019

Ο Πόε για τη μαθηματική ανάλυση


Ο Έντγκαρ Άλλαν Πόε (1809 - 1849) ήταν Αμερικανός ποιητής και πεζογράφος και, προσωπικά, ένας από τους αγαπημένους μου. Το έργο του είχε σημαντική επιρροή στην παγκόσμια λογοτεχνία, αποτελώντας θεμέλιο λίθο για την εξέλιξη της αστυνομικής λογοτεχνίας, αλλά και τη λογοτεχνία τρόμου και φαντασίας.


Στο διήγημα μυστηρίου "Οι φόνοι στην οδό Νεκροτομείου" (Murders in the Rue Morgue, 1841) διαβάζει κανείς:

"Η αναλυτική ικανότητα ενισχύεται σημαντικά με τη μελέτη των μαθηματικών και ειδικά του υψηλότερου κλάδου τους που, αδίκως πάντως, μόνο και μόνο λόγω της παλινδρομικής του λειτουργίας ονομάζεται ανάλυση. Μια πράξη υπολογισμού δεν συνιστά ανάλυση..."

Τρίτη 30 Ιουλίου 2019

Τα Μαθηματικά στην Τέχνη: Αρχιμήδεια στερεά και διάφορα κυρτά πολύεδρα


Στην προηγούμενη ανάρτηση του πρότζεκτ "Τα Μαθηματικά στην Τέχνη" είδαμε τα πέντε κανονικά πολύεδρα, που ονομάστηκαν και πλατωνικά στερεά. Αυτό που τα καθιστά ξεχωριστά είναι το γεγονός ότι οι έδρες τους είναι όλες κανονικά πολύγωνα του ίδιου τύπου. Η επόμενη κατηγορία πολυέδρων είναι τα ημικανονικά πολύεδρα ή αλλιώς αρχιμήδεια στερεά...

Σχέδια διαφόρων πολυέδρων. Από το βιβλίο του Max Brückner "Πολύγωνα και Πολύεδρα: Θεωρία και Ιστορία", 1900.


Σύμφωνα με μαρτυρία του Πάππου, ο Αρχιμήδης στη χαμένη πραγματεία του για τα λεγόμενα ημικανονικά πολύεδρα, διακρίνει μια νέα κατηγορία πολυέδρων.


Τα βιβλία γράφουν...

Τα αρχιμήδεια στερεά (ή στερεά του Αρχιμήδη) είναι ημικανονικά κυρτά πολύεδρα, οι έδρες των οποίων είναι κανονικά πολύγωνα, αλλά όχι όλες του ίδιου τύπου. Τα κανονικά πολύγωνα που αποτελούν τις έδρες έχουν όλα ίσες τις πλευρές τους, δηλαδή οι ακμές κάθε αρχιμήδειου πολυέδρου είναι όλες ίσες. Οι έδρες ενώνονται με τον ίδιο ακριβώς τρόπο σε όλες τις κορυφές του πολυέδρου, διαμορφώνοντας ίσες πολυεδρικές γωνίες. Υπάρχουν 13 αρχιμήδεια στερεά:


Κόλουρο Τετράεδρο

Έχει 8 έδρες: 4 τρίγωνα και 4 εξάγωνα.
Ο όρος "κόλουρο" αναφέρεται στη διαδικασία της αποκοπής των κορυφών από ένα αρχικό πολύεδρο. Έτσι, κατασκευαστικά, το κόλουρο τετράεδρο προέρχεται από ένα τετράεδρο, από το οποίο έχουμε αποκόψει τις 4 κορυφές.


Σχέδιο του Leonardo da Vinci  για το βιβλίο του Luca Paccioli "De Divina Proportione" (1509)


Kυβοκτάεδρο

Έχει 14 έδρες: 8 τρίγωνα και 6 τετράγωνα.

Σχέδιο του Leonardo da Vinci  για το βιβλίο του Luca Paccioli "De Divina Proportione" (1509)


Ana Conde (Σύγχρονη ζωγράφος και tattoo artist) - "Cuboctahedron Full of Dust Bunnies" (2018)


James Sawyer (Σύγχρονος καλλιτέχνης) -  "Octahedron Inside a Cuboctahedron" (2010)


Κόλουρος Κύβος ή Κόλουρο Εξάεδρο


Έχει 14 έδρες: 8 τρίγωνα και 6 οκτάγωνα.


Άγνωστος καλλιτέχνης από τις Η.Π.Α. - "Truncated Cube, Possibly a Zodiac Instrument"



Κόλουρο Οκτάεδρο

Έχει 14 έδρες: 6 τετράγωνα και 8 κανονικά εξάγωνα.
Κατασκευαστικά, προέρχεται από το οκτάεδρο, αν αποκοπούν όλες οι κορυφές του στο 1/3 της ακμής, έτσι ώστε από τις έδρες του αρχικού οκτάεδρου να προκύψουν εξάγωνα και στη θέση των αποκομμένων κορυφών του να σχηματιστούν τετράγωνα.

"Octocedron Abscisus Vacuus"
Σχέδιο του Leonardo da Vinci  για το βιβλίο του Luca Paccioli "De Divina Proportione" (1509)



Ρομβοκυβοκτάεδρο (ή μικρό ρομβοκυβοκτάεδρο)

Έχει 26 έδρες: 8 τρίγωνα και 18 τετράγωνα.

"Vigintisex Basilum Planus Vacuus"
Σχέδιο του Leonardo da Vinci  για το βιβλίο του Luca Paccioli "De Divina Proportione" (1509)


Η πρώτη τυπωμένη απεικόνιση ενός ρομβοκυβοκτάεδρου. Έργο του Leonardo da Vinci, στο βιβλίο του Luca Paccioli, "De Divina Proportione" (1509)


Jacopo de Barbari (1460 - 1516). Ο πίνακας απεικονίζει τον Luca Paccioli και τον μαθητή του Guidobaldo, δούκα του Urbino. Στην πάνω αριστερή γωνία είναι κρεμασμένο ένα ρομβοκυβοκτάεδρο, γεμάτο με νερό μέχρι τη μέση. Στο τραπέζι θα παρατηρήσει κανείς ένα δωδεκάεδρο πάνω σ' ένα αντίγραφο των στοιχείων του Ευκλείδη, έναν διαβήτη, μια πυξίδα, ενώ ο Paccioli παρουσιάζει ένα θεώρημα του Ευκλείδη. 


Κόλουρο Κυβοκτάεδρο (ή μέγα ρομβοκυβοκτάεδρο)

Έχει 26 έδρες: 12 τετράγωνα, 8 εξάγωνα και 6 οκτάγωνα.

Jim Wrenholt (Σύγχρονος graphic designer) - "Truncated Cuboctahedron" (2014)


Πεπλατυσμένος κύβος (ή πεπλατυσμένο εξάεδρο)

Έχει 38 έδρες: 32 τρίγωνα και 6 τετράγωνα.
Ο όρος "πεπλατυσμένος" αναφέρεται στη διαδικασία της "επέκτασης" του αρχικού σχήματος. Κατασκευαστικά, ο πεπλατυσμένος κύβος μπορεί να προέλθει από τον κύβο, αν απομακρύνουμε όλες τις έδρες του προς τα έξω, κατά ορισμένη απόσταση και τις περιστρέψουμε ως προς το κέντρο τους έτσι, ώστε τα κενά που δημιουργούνται να μπορούν να καλυφθούν από ισόπλευρα τρίγωνα.

Γλυπτό-συντριβάνι σε σχήμα πεπλατυσμένου κύβου. Διακοσμεί τον εξωτερικό χώρο του Caltech στην Καλιφόρνια.



Εικοσιδωδεκάεδρο

Έχει 32 έδρες: 20 τρίγωνα και 12 πεντάγωνα.

Η πρώτη τυπωμένη απεικόνιση ενός εικοσιδωδεκάεδρου. Έργο του Leonardo da Vinci, στο βιβλίο του Luca Paccioli, "De Divina Proportione" (1509)

P.S. (Σύγχρονος graphic designer) - "Icosidodecahedron 2"


Κόλουρο δωδεκάεδρο

Έχει 32 έδρες: 20 τρίγωνα και 12 δεκάγωνα.

Jim Wrenholt (Σύγχρονος graphic designer) - "Truncated Dodecahedron" (2014)


Κόλουρο εικοσάεδρο

Έχει 32 έδρες: 12 πεντάγωνα και 20 εξάγωνα. Το μοτίβο του κόλουρου εικοσάεδρου χρησιμοποιείται στην κατασκευή της συνηθισμένης μπάλας ποδοσφαίρου.

"Ycocedron Abscisus Vacuus"
Σχέδιο του Leonardo da Vinci  για το βιβλίο του Luca Paccioli "De Divina Proportione" (1509)

Απόκρυφη Γεωμετρία της Αναγέννησης: Ένα ζευγάρι χέρια στηρίζει ένα κόλουρο εικοσάεδρο. Γλυπτό που διακοσμεί το ταφικό μνημείο του Sir Anthony Ashley, σε έναν ενοριακό ναό κοντά στο Salisbury, Αγγλία.


Ρομβοεικοσιδωδεκάεδρο (ή μικρό ρομβοεικοσιδωδεκάεδρο)

Έχει 62 έδρες: 20 τρίγωνα, 30 τετράγωνα και 12 πεντάγωνα.

Jim Wrenholt (Σύγχρονος graphic designer) - "Rhombicosidodecahedron" (2014)


Κόλουρο εικοσιδωδεκάεδρο (ή μέγα ρομβοεικοσιδωδεκάεδρο )

Έχει 62 έδρες: 30 τετράγωνα, 20 εξάγωνα και 12 δεκάγωνα.

Lindsey Carr (Σύγχρονη ζωγράφος) - "Jacques Great Rhombicosidodecahedron"


Πεπλατυσμένο δωδεκάεδρο (ή πεπλατυσμένο εικοσιδωδεκάεδρο)

Έχει 92 έδρες: 80 τρίγωνα και 12 πεντάγωνα.
Κατασκευαστικά, το πεπλατυσμένο δωδεκάεδρο μπορεί να προέλθει με διαδικασία παρόμοια με εκείνη του πεπλατυσμένου κύβου, μόνο που τώρα το αρχικό στερεό είναι ένα δωδεκάεδρο.

Jim Wrenholt (Σύγχρονος graphic designer) - "Snub Dodecahedron" (2014)


Τα βιβλία γράφουν...

Ο πρώτος που ασχολήθηκε με την κατασκευή αρχιμήδειων στερεών φαίνεται να ήταν ο Αρχιμήδης, ο οποίος τα διαπραγματευόταν στο (μη σωζόμενο) έργο του "Περί 13 ημικανονικών πολυέδρων" και γι' αυτό φέρουν το όνομά του. Ωστόσο, το όνομα κάθε αρχιμήδειου στερεού οφείλεται στον Kepler, που τα μελέτησε εκτενώς στο βιβλίο του "Αρμονικός Κόσμος" (Harmonices Mundi, 1619) και σήμερα έχουμε τη μεταφρασμένη, από τα λατινικά, ορολογία.



Διάφορα άλλα κυρτά πολύεδρα



Εννεάεδρο - Επιμήκης τετραγωνική πυραμίδα

Οι μικροί μαθητές πολύ ορθά το παρομοιάζουν με σπίτι!

Sabrina Barrios (Σύγχρονη καλλιτέχνιδα) - "Enneahedron" (2019)


72εδρη σφαίρα (ή σφαίρα του Κάμπανου)

Το πολύεδρο αυτό προσεγγίζει τη σφαίρα και αποτελεί τη βάση για την κατασκευή αρχιτεκτονικών θόλων.

"Septuaginta Duarum Basilum Solidum"
Σχέδιο του Leonardo da Vinci  για το βιβλίο του Luca Paccioli "De Divina Proportione" (1509)

"Septuaginta Duarum Basilum Vacuum"
Σχέδιο του Leonardo da Vinci  για το βιβλίο του Luca Paccioli "De Divina Proportione" (1509)


Το στερεό του Dürer

Πρόκειται για το στερεό που διακρίνεται στο αριστερό κομμάτι της γκραβούρας του Albrecht Dürer, "Melencolia I":

Albrecht Dürer (1471-1528) - "Melencolia I" (1514)
O Dürer ήταν ζωγράφος, χαράκτης και μαθηματικός της Γερμανικής Αναγέννησης, που ένωσε τη Γεωμετρία με την Τέχνη. Περιέγραψε το στερεό αυτό ως ένα κόλουρο ρομβόεδρο.


Τα βιβλία γράφουν...


Για κάθε κυρτό πολύεδρο ισχύει ο τύπος του Euler:

K + E = A + 2,
όπου Κ το πλήθος των κορυφών του, Ε το πλήθος των εδρών του και Α το πλήθος των ακμών του.
Με άλλα λόγια, τα κυρτά πολύεδρα έχουν χαρακτηριστική Euler  χ = Κ - Α + Ε = 2.


Τα αρχιμήδεια στερεά, αλλά και πολλά άλλα πολύεδρα, παρουσιάζουν ποικίλες συμμετρίες και ομάδες συμμετρίας, οι οποίες μελετώνται από τη σύγχρονη Θεωρία Ομάδων. Εικάζεται ότι οι συμμετρίες αυτές είναι ο κύριος λόγος που ενέπνευσαν τόσο έντονα τους καλλιτέχνες, ειδικά κατά την Αναγέννηση. Ο καλλιτέχνης της Αναγέννησης που ασχολήθηκε διεξοδικότερα με τα πολύεδρα ήταν ο Leonardo da Vinci. Ειδικότερα, η τεχνοτροπία αναπαράστασης πολυέδρων που πρώτος χρησιμοποίησε, απεικονίζοντάς τα στέρεα και κοίλα, σαν ξύλινα μοντέλα (που πιθανότατα είχε κατασκευάσει για το σκοπό αυτό ο Luca Paccioli), ώστε να φαίνονται και οι "πίσω" ακμές, επηρέασε καθοριστικά όσους μεταγενέστερους ασχολήθηκαν με τα πολύεδρα στη ζωγραφική και γενικότερα στις εικαστικές τέχνες.  


Αναγεννησιακό ξυλόγλυπτο (Intarsia), έργο του Fra Giovanni da Verona (1457 - 1525). Σκευοφυλάκιο της Αγίας Μαρίνας στο αρμόνιο της Βερόνα (περ. 1494 - 1499). Απεικονίζει, μεταξύ άλλων, ένα κόλουρο εικοσάεδρο και μια 72-εδρη σφαίρα.
Σελίδα από το βιβλίο του Lorenzo Sirigatti (1561 - 1614), "Η Πρακτική της Προοπτικής" (La Pratica di Perspettiva, Βενετία, 1596), ένα βιβλίο για καλλιτέχνες και αρχιτέκτονες. Απεικονίζονται δύο εικοσιδωδεκάεδρα, δύο κόλουρα εικοσάεδρα (με και χωρίς τις έδρες τους), καθώς και ένα μικρό αστεροειδές δωδεκάεδρο, το οποίο θα αναλυθεί στο επόμενο μέρος.


.*.〰.*.〰.*.〰.*.〰.*.〰.*.〰.*.

"Τα βασικά στοιχεία των μαθηματικών, οι αριθμοί και η μέτρηση, που ονομάστηκαν αριθμητική και γεωμετρία, χρησιμοποιούνται με υπέρτατη αλήθεια σε διακριτές αλλά και συνεχείς ποσότητες. Εδώ δε συναντάμε διαφωνίες, λόγου χάρη ότι 2 φορές το 3 μας κάνει περισσότερο ή λιγότερο  από 6, ή ότι ένα τρίγωνο έχει άθροισμα γωνιών μικρότερο ή μεγαλύτερο από 2 ορθές, αλλά με αιώνια σιωπή, κάθε διαφωνία παύει να υφίσταται και, με ηρεμία, αυτές οι επιστήμες όπως τα μαθηματικά απολαμβάνονται από τους αφοσιωμένους τους ακολούθους".
Leonardo da Vinci

.*.〰.*.〰.*.〰.*.〰.*.〰.*.〰.*.




Πηγές: