Δευτέρα 16 Ιανουαρίου 2023

"Η εκδίκηση του Πυθαγόρα"

 

Ο διάσημος μαθηματικός και φιλόσοφος Πυθαγόρας δεν άφησε πίσω του κανένα γραπτό κείμενο. Αν, όμως, δεν ίσχυε κάτι τέτοιο και το χειρόγραφο απλώς δεν βρέθηκε ποτέ; Πού μπορεί να βρίσκεται; Και ποιες πληροφορίες θα αποκάλυπτε;


"Η εκδίκηση του Πυθαγόρα", μαθηματικό μυθιστόρημα


Ο Τζουλ Ντέιβιντσον, ένας νεαρός Αμερικανός μαθηματικός, επιλύει κάποια δύσκολα μαθηματικά προβλήματα στο διαδίκτυο και πέφτει πάνω σε μια σέχτα νεοπυθαγορείων που αναζητούν τη μετενσάρκωση του Πυθαγόρα. Στην άλλη άκρη του ωκεανού, ο 'Ελμερ Γκάλγουεϋ, καθηγητής αρχαίας ιστορίας στην Οξφόρδη, ανακαλύπτει ένα αραβικό χειρόγραφο που αναφέρει την ύπαρξη ενός αρχαίου παπύρου - γραμμένου πιθανόν από τον ίδιο τον Πυθαγόρα. Άγνωστοι μεταξύ τους, ο Τζουλ και ο Έλμερ έχουν ο καθένας τους πληροφορίες που τις χρειάζεται ο άλλος και, καθώς σπεύδουν να λύσουν τους φιλοσοφικούς και μαθηματικούς γρίφους που έχουν εμφανιστεί μπροστά τους, οι δρόμοι τους τελικά διασταυρώνονται.


Από την ακαδημαϊκή Οξφόρδη ως τα προάστια του Σικάγο και την ιστορική Ρώμη, η Εκδίκηση του Πυθαγόρα του Αρτούρο Σανγκάλλι είναι ένα θρίλερ που θα κρατήσει τον αναγνώστη σε αγωνία από την αρχή ως το εκπληκτικό τέλος. 


Τετάρτη 28 Δεκεμβρίου 2022

Ο μαθηματικός Θανάσης Φωκάς εξηγεί τα «Μονοπάτια Κατανόησης»...

 

Ο νοητός περίπατος στα «Μονοπάτια Κατανόησης» του εγκεφάλου με «ξεναγό» έναν από τους σπουδαιότερους μαθηματικούς διεθνώς, που είναι επίσης αεροναυπηγός, φιλόσοφος και γιατρός, πρόκειται να είναι σίγουρα μια σπάνια εμπειρία.


Θανάσης Φωκάς


Ο Θανάσης Φωκάς, γεννημένος το 1952 στην Κεφαλονιά, είναι ο πρώτος κάτοχος της Έδρας Μη Γραμμικών Μαθηματικών στο πανεπιστήμιο του Κέμπριτζ και τώρα διευθυντής του προγράμματος «Ελλάδα 2001, Μαθηματική κληρονομιά» (εντός του πλαισίου του προγράμματος  Γιάννα Αγγελοπούλου, Επιστήμη, Τεχνολογία και Καινοτομία). Είναι, επίσης καθηγητής του Πανεπιστημίου της Νότιας Καλιφόρνιας και μέλος της Ακαδημίας Αθηνών. Σε  λίγες ημέρες κυκλοφορεί στα ελληνικά ο πρώτος τόμος της τριλογίας με τίτλο «Μονοπάτια Κατανόησης» (εκδόσεις Broken Hill) με την οποία ο Φωκάς παρουσιάζει μια ολιστική προσέγγιση σχετικά με το βασικό ερώτημα "πώς κατανοούμε;".

Σε αυτήν την άκρως διεπιστημονική προσπάθεια, καθοριστικό ρόλο διαδραματίζει η διαλεύκανση θεμελιωδών νευρωνικών μηχανισμών, από το συνεχές των ασυνειδήτων-συνειδητών διαδικασιών, μέχρι τις διαδικασίες μνήμης και μάθησης σε μοριακό επίπεδο.

Βασικό συστατικό στοιχείο αυτής της καινοτόμου προσέγγισης αποτελεί η εισαγωγή της έννοιας των μεταναπαραστάσεων, στην οποία εντοπίζεται το κύριο χαρακτηριστικό της νοητικής μας υπεροχής  σε σχέση με τους εξελικτικούς μας προγόνους.

Για την υποστήριξη και επεξήγηση των ανωτέρω χρησιμοποιούνται μια πληθώρα παραδειγμάτων από τις περιοχές των Μαθηματικών, της Φυσικής, των Επιστημών του Μηχανικού, της Τεχνολογίας, της Βιολογίας, της Ιατρικής, της Φιλοσοφίας και της Ζωγραφικής.

Με βάση την σύνθεση των παραπάνω γνωστικών αντικειμένων, αναλύονται μία σειρά σημαντικών ερωτημάτων συμπεριλαμβανομένων των ακολούθων:

  • Ποια είναι η σχέση ανάμεσα στην εγγενή και την επίκτητη γνώση;
  • Γιατί είναι δυνατό να κατανοούμε το σύμπαν;
  • Ποια είναι η επίδραση της πολιτιστικής εξέλιξης στον εγκέφαλό μας;
  • Ποια είναι η νευρωνική προέλευση των διεργασιών που διέπουν τις τέχνες και τα γράμματα;
  • Γιατί οι μαθηματικές εξισώσεις που χαρακτηρίζουν βασικά φυσικά φαινόμενα είναι κομψές;
  • Μπορεί το πρόβλημα της συνείδησης να επιλυθεί;
  •  Θα είναι η επίδραση των μαθηματικών στη βιολογία εξίσου σημαντική όσο στη φυσική;


Μονοπάτια Κατανόησης


Η συζήτηση όμως ξεκίνησε από το επιστημονικό του έργο, που έχει αποσπάσει διεθνή αναγνώριση. Ιδιαίτερα, θα μείνει για πάντα στην ιστορία των επιστημών ως εκείνος που εφηύρε την «Μέθοδο Φωκά».  

– Τι είναι η «Μέθοδος Φωκά»;

– Ο κορυφαίος μαθηματικός του 18ου αιώνα Φουριέ, παρήγαγε την εξίσωση που διέπει την μετάδοση της θερμότητας και συγχρόνως εισήγαγε μια καινοτόμο μέθοδο για την λύση της. Αυτή η μέθοδος στηρίζεται στην περίφημη σειρά Φουριέ. Δεν υπάρχει μαθηματικός που να μην γνωρίζει αυτόν τον φορμαλισμό. Για 200 χρόνια η μέθοδος αυτή αποτελούσε τον αναμφισβήτητο τρόπο με τον οποίο λύναμε εξισώσεις. Η μέθοδός μου, την οποία εκατοντάδες ερευνητές ονομάζουν «Μέθοδο Φωκά», όχι μόνο λύνει πολύ μεγάλο αριθμό προβλημάτων που είναι αδύνατον να λυθούν με την σειρά του Φουριέ, αλλά ακόμη και για προβλήματα που λύνονται με τον παραδοσιακό τρόπο, προσφέρει έναν εντελώς καινούργιο φορμαλισμό με αδιαφιλονίκητα αναλυτικά και υπολογιστικά πλεονεκτήματα.

– Είστε ο πρώτος κάτοχος της έδρας των μη γραμμικών μαθηματικών στο Κέμπριτζ. Μάλιστα η έδρα δημιουργήθηκε για εσάς. Τα μη γραμμικά μαθηματικά περιγράφουν τα μη γραμμικά φαινόμενα, δηλαδή τον ίδιο τον κόσμο. Σωστά;

– Όντως, τα περισσότερα φαινόμενα είναι μη γραμμικά. Για παράδειγμα, οι εξισώσεις της Θεωρίας της Σχετικότητας είναι μη γραμμικές. Μία προσπάθεια λύσεως των μη γραμμικών εξισώσεων είναι η προσέγγισή τους με γραμμικές εξισώσεις. Συνήθως όμως αυτές οι προσεγγίσεις δεν εκφράζουν πλήρως την πραγματικότητα η οποία εμπεριέχεται στις μη γραμμικές εξισώσεις. Ευτυχώς, τα τελευταία 50 χρόνια έχουν αναπτυχθεί εντυπωσιακά τα μη γραμμικά μαθηματικά, τα οποία συμπεριλαμβάνουν και την «θεωρία του χάους».

– Σε 500 χρόνια θα μπορούμε να παρακολουθούμε «Δελτία Μέλλοντος» όπως σήμερα παρακολουθούμε «Δελτία Καιρού»;

– Ακούστε. Το συνειδητό ήταν ένα μεγάλο δημιούργημα της εξέλιξης. Συγχρόνως όμως έχει περιορισμούς. Ιδιαίτερα το συνειδητό ζητά απολυτότητα και  πληρότητα. Η πραγματικότητα είναι πολύ πιο πολύπλοκη από αυτή που εκφράζει το συνειδητό. Η ερώτησή σας, σε συνέπεια με τα βασικά χαρακτηριστικά του συνειδητού, απολυτοποιεί την ισχύ των μαθηματικών και δεν μπορεί να απαντηθεί. Παρεμπιπτόντως, το ασυνείδητο κατανοεί την πραγματικότητα πληρέστερα από το συνειδητό και σε αντίθεση με το συνειδητό αποδέχεται  την σπουδαιότητα των μεταφορών κα της αμφισημίας. Για παράδειγμα, το ασυνείδητο είναι καθοριστικής σημασίας για την εκτίμηση της  τέχνης και για αυτό στις τέχνες δεχόμαστε την σπουδαιότητα της αμφισημίας.

– Πώς θα εξηγήσουμε, πώς θα απλοποιήσουμε αυτή τη σύνθετη πραγματικότητα;

– Δεν μπορούμε να την απλοποιήσουμε. Μπορούμε όμως να αναπτύξουμε καλύτερους τρόπους να πλησιάσουμε την κατανόησή της. Προς αυτή την κατεύθυνση, είναι ανάγκη να διαλευκάνουμε και κατόπιν να αποδεχθούμε τους μηχανισμούς που χρησιμοποιεί ο εγκέφαλος. Ιδιαίτερα να βυθιστούμε στο ασυνείδητο. Εκεί υπάρχει πολύ περισσότερη πληροφορία η οποία χάνεται καθώς ταξιδεύει προς το συνειδητό. Αυτό αναλύεται διεξοδικά στο βιβλίο μου.

– Στο βιβλίο σας εκφράζετε διαφωνίες με τον Πλάτωνα. Πού ακριβώς διαφωνείτε;

– Ο κύριος εκφραστής του συνειδητού στη φιλοσοφία ήταν ο Πλάτωνας. Για τον Πλάτωνα σημαντικό ήταν ό,τι ήταν πλήρες, ό,τι ήταν ακριβές, ό,τι εκφράζεται με κανόνες. Όμως, η πραγματικότητα είναι πολύ πιο σύνθετη. Ο Πλάτωνας αγνόησε τον καθοριστικό ρόλο του ασυνείδητου. Από την άλλη μεριά, κατά την γνώμη μου, η «θεωρία των Ιδεών» αποτελεί ένα εξαιρετικό παράδειγμα της προδιάθεσης του εγκεφάλου να δημιουργεί μεταναπαραστάσεις, δηλαδή να περνάει από μια νοητική εικόνα στην κατασκευή της.

– Τι εννοείτε;

– «Για παράδειγμα, πώς αντιλαμβάνομαι το πρόσωπό σας; Ο εγκέφαλός μου, χρησιμοποιώντας ασυνείδητους μηχανισμούς λύνει ένα δύσκολο αντίστροφο πρόβλημα: Από την γνώση της κατανομής των φωτονίων που εισέρχονται στον  αμφιβληστροειδή  δημιουργεί την νοητική εικόνα του προσώπου σας. Ονομάζω την ενεργοποίηση των νευρωνικών κυκλωμάτων υπεύθυνων για τους ανωτέρω ασυνείδητους μηχανισμούς την νοητική αναπαράσταση που προηγείται της νοητικής εικόνας. Προφανώς και τα ζώα κατασκευάζουν νοητικές εικόνες. Θεωρώ ότι η διαφορά μας από τα άλλα ζώα είναι η ικανότητα μας να υλοποιούμε τόσο τις νοητικές μας αναπαραστάσεις όσο και τις νοητικές μας εικόνες (όπως γίνεται στις τέχνες), ή να τους δίδουμε συμβολισμούς (όπως γίνεται στην γλώσσα και τα μαθηματικά). Ο Πλάτωνας  κατασκεύασε έναν, κατά αυτόν υπαρκτό κόσμο, όπου τοποθέτησε αυτές τις μεταναπαραστάσεις. Αυτός είναι ο περίφημος κόσμος των ιδεών.

– Μπορεί μέσω των μεταναπαραστάσεων ο εγκέφαλος να κατανοήσει τον εγκέφαλο;

– Ναι. Κατά την γνώμη μου, δύο ήταν τα θαύματα της εξέλιξης στο νοητικό επίπεδο. Το πρώτο  ήταν ότι το νευρικό σύστημα ενημέρωσε τον εαυτό του για αυτά που ήδη γνώριζε. Αυτή η «ενημερότητα», είναι η πεμπτουσία της συνείδησης. Το δεύτερο θαύμα είναι αυτό που διαφοροποιεί εμάς από τους εξελικτικούς μας προγόνους: η προδιάθεσή μας να δημιουργούμε μεταναπαραστάσεις.

– Μπορεί αυτή η καινοτόμος έννοια των μεταναπαραστάσεων που εισάγεται στο βιβλίο σας να μας βοηθήσει να κατανοήσουμε καλύτερα την γέννηση της πρωτοτυπίας στις τέχνες;

– Θεωρώ ότι όσο πιο προηγμένη είναι μια μορφή τέχνης, τόσο λιγότερο επηρεάζεται το πέρασμα από τις ασυνείδητες νοητικές αναπαραστάσεις στην υλοποίησή τους από συνειδητές διαδικασίες.

– Αυτό είναι το «κλειδί» της μεγάλης τέχνης; 

– Πιστεύω ναι. Είναι εξαιρετικά ενδιαφέρον ότι ο  Άρνολντ Σένμπεργκ  και ο Πάμπλο Πικάσο εξέφρασαν με σχεδόν τα ίδια λόγια την σπουδαιότητα του ασυνείδητου. Ο Σένμπεργκ είπε ότι «ένας συνθέτης θέλει να μάθει τους νόμους που διέπουν τη μουσική την οποία ο ίδιος συνέλαβε σαν όνειρο». Ο Πικάσο είχε πει ότι αποφάσισε να φωτογραφίζει τα έργα του σε διάφορα στάδια της δημιουργίας τους έτσι ώστε «να κατορθώσει να συλλάβει πώς το όνειρο γίνεται πραγματικότητα».

– Γιατί κατανοούμε τον κόσμο παρά το γεγονός ότι είναι πιο σύνθετος απ’ όσο νομίζουμε;

– Γιατί αφενός μεν είμαστε τυχεροί, αφετέρου δε ο εγκέφαλος μας έχει την ικανότητα να κατασκευάζει μεταναπαραστάσεις. Είμαστε τυχεροί γιατί οι βασικοί νόμοι της φύσης που διέπουν τον μακρόκοσμο είναι εξαιρετικά απλοί. Αυτό επέτρεψε στον Νεύτωνα να τους κατανοήσει και να τους εκφράσει με πολύ απλές εξισώσεις. Αν ίσχυε στον μακρόκοσμο η Γενική Θεωρία της Σχετικότητας δεν θα μπορούσαμε ποτέ να καταλάβουμε τίποτα. Πώς όμως περάσαμε από τη Νευτώνεια Φυσική στη Φυσική του Αϊνστάιν; Αυτό το άλμα οφείλεται στην ικανότητα του εγκεφάλου να δημιουργεί μεταναπαραστάσεις και στην συνεχή αλληλεπίδραση αυτών των κατασκευών με ασυνείδητες διαδικασίες. Αυτό οδηγεί σε αφαίρεση, σε γενίκευση, και στην παραγωγή όλο και πιο πολύπλοκων δομών. Αυτές οι δομές είναι απαραίτητες για την κατανόηση της αφανούς πραγματικότητας.

– Πώς κατανοούμε τον αφανή κόσμο;

– Πάρτε για παράδειγμα τη Ρημάνεια Γεωμετρία, η οποία αποτελεί μια γενίκευση της Ευκλείδειας γεωμετρίας. Αυτή η γεωμετρία, την οποία διατύπωσε ο Γερμανός Μαθηματικός του 19ου αιώνα Μπέρναρντ Ρήμαν, είναι πολύ δύσκολο να κατανοηθεί διαισθητικά και κατά συνέπεια αποτελεί ένα παράδειγμα της γενεσιουργής ικανότητας το εγκεφάλου να δημιουργεί νέες μαθηματικές δομές δια μέσου της διαδικασίας της γενίκευσης. Είναι εξαιρετικά ενδιαφέρον ότι η Ρημάνεια γεωμετρία αποτελεί την βάση της Γενικής Θεωρίας της Σχετικότητας. Δηλαδή εκφράζει την αφανή πραγματικότητα που υπάρχει στο σύμπαν με πολύ μεγαλύτερη ακρίβεια από την Ευκλείδεια γεωμετρία.

– Εσείς έχετε καλή σχέση με το υποσυνείδητό σας;

– Υπήρχαν περιπτώσεις που παρόλο που όλα στην οικογένειά μας ήταν καλά, ξύπναγα σε  κακή διάθεση. Τότε, έλεγα στη γυναίκα μου: «Δεν πάει καλά ο Ρήμαν», εννοώντας ότι δεν πήγαινε καλά μια προσπάθεια 13 ετών να αποδείξω μια υπόθεση που  συνδέεται άμεσα με την περίφημη υπόθεση Ρήμαν (το πιο σημαντικό ανοιχτό πρόβλημα στην ιστορία των μαθηματικών). Και πράγματι, λίγες ώρες αργότερα ανακάλυπτα κάποιο λάθος. Το ασυνείδητό μου ήδη το γνώριζε. Και επειδή το ασυνείδητο έχει γρηγορότερη πρόσβαση στα συναισθήματα, ξύπναγα με κακή διάθεση.

– Είχατε ένα προαίσθημα…

– Ναι, αυτή η κακή διάθεση είναι ένα προαίσθημα. Ο εγκέφαλος ήδη ξέρει, αλλά δεν έχει ακόμη πληροφορήσει το συνειδητό. Έχει συμβεί και το αντίθετο. Να ξυπνήσω με πολύ καλή διάθεση. Προαίσθημα ότι η έρευνα πάει καλά. Ένα κύριο κομμάτι του βιβλίου αποτελεί τη περιγραφή  νευρωνικών  μηχανισμών δια μέσω των οποίων το ασυνείδητο φτάνει στο συνειδητό. Κατά την γνώμη μου το κλειδί της δημιουργικότητας βρίσκεται  στην πρόσβαση στο ασυνείδητο.

– Έχετε πει ότι σας αρέσει η μουσική του Σένμπεργκ. Γιατί Σένμπεργκ και όχι Μότσαρτ;

– Βεβαίως και απολαμβάνω τον Μότσαρτ. Ας μην ξεχνάμε ότι ο Σένμπεργκ είπε πώς οτιδήποτε έγραψε ο Μότσαρτ είναι τέλειο. Ωστόσο, θαυμάζω τον Σένμπεργκ επειδή έφτασε στην ατονική μουσική, όχι γιατί δεν μπορούσε να γράψει τονική, αλλά επειδή κατανόησε τα όρια την τονικής μουσικής. Όντως, η Εξαϋλωμένη Νύχτα και τo Gurre–Lieder είναι τουλάχιστον επιπέδου Μάλερ και Βάγκνερ, αντίστοιχα. Παρεμπιπτόντως, θεωρώ τον Σένμπεργκ το πιο εφευρετικό καλλιτέχνη από την εποχή της Αναγέννησης: όχι μόνο πέτυχε αυτό το άλμα στην μουσική, αλλά και ήταν και ένας εξαιρετικός εξπρεσιονιστής ζωγράφος που έφτασε στην αφηρημένη ζωγραφική ένα χρόνο πριν από τον Καντίνσκι (γεγονός που παραμένει άγνωστο στο ευρύ κοινό)».  

– Τι εννοείτε με τα «όρια της τονικής μουσικής»;

– Όπως είναι γνωστόν, η εξέλιξη στην Φυσική και σε άλλες επιστήμες είναι αποτέλεσμα αποτυχίας. Νέα δεδομένα οδηγούν στο συμπέρασμα ότι μια συγκεκριμένη θεωρία είναι ελλιπής και αυτό τελικά οδηγεί στην αντικατάσταση αυτής της θεωρίας από μια νέα θεωρία που είναι συνεπής με τα καινούργια δεδομένα. Για παράδειγμα, έτσι γεννήθηκε η Ειδική Θεωρία της Σχετικότητας, που αποτελεί γενίκευση του νόμου του Νεύτωνα στην περίπτωση που το υπό εξέταση αντικείμενο κινείται με μεγάλη ταχύτητα. Κατά την γνώμη μου, η πρόοδος στις τέχνες είναι αποτέλεσμα επιτυχίας. Για παράδειγμα, η συμφωνική μουσική έφθασε την τελειότητα με την Ενάτη του Μπετόβεν. Παρά τις ηρωικές προσπάθειες του Μπραμς και του Μπρούκνερ έγινε προφανές ότι ήταν πλέον ανάγκη να υπάρξει μια νέα μορφή έκφρασης, το οποίο επιτεύχθηκε από τον Μάλερ. Ο ίδιος ο μεγάλος αυτός συνθέτης, κατανοώντας ένα καινούργιο αδιέξοδο, έφθασε πολύ κοντά στην ατονική μουσική. Αυτό που δεν πρόλαβε να πετύχει ο Μάλερ, λόγω του πρόωρου θανάτου του, το πέτυχε ο μεγάλος θαυμαστής του, ο Σένμπεργκ.

– Μα η μουσική του Σένμπεργκ δίνει μια αίσθηση δυσαρμονίας.

– Ναι, αλλά όπως αναφέρει ο κορυφαίος αυτός συνθέτης, αποδεχόμενος πλήρως την σπουδαιότητα ασυνειδήτων μηχανισμών όπως αυτή εκφράστηκε από τους Σοπενχάουερ και Νίτσε, η δυσαρμονία της ατονικής μουσικής δεν είναι τίποτε άλλο παρά προχωρημένη μορφή αρμονίας.


Πηγή συνέντευξης

Σάββατο 24 Δεκεμβρίου 2022

Καλά Χριστούγεννα!


Καλά Χριστούγεννα!

Αν τα Χριστούγεννα σε βρίσκουν με τα αγαπημένα σου πρόσωπα, σε ένα ζεστό σπίτι, με νόστιμο φαγητό, αν έχεις σε ποιον να χαρίσεις δώρα, τότε είσαι πολύ τυχερός, γιατί περνάς καλύτερα από την πλειοψηφία των ανθρώπων σ' αυτόν τον κόσμο!
Καλά Χριστούγεννα!!!🎅🎇

Κυριακή 11 Δεκεμβρίου 2022

Για τη μεθοδολογία στη διδασκαλία των Μαθηματικών


✅ Η μεθοδολογία απορρέει από την καλή γνώση της θεωρίας. 

✅ Η ασκησιολογία οδηγεί στη μαθηματικοφοβία. 

💬 "Αν υπήρχε μέθοδος για το πώς να πίνουμε νερό, θα πνιγόμαστε συνεχώς..." (Άλφρεντ Άντλερ) 


Μεθοδολογία
Από την ημερίδα Μαθηματικών την Πέμπτη 8/12/22 στη Λάρισα


Παρασκευή 11 Νοεμβρίου 2022

"Ο μέτοικος και η συμμετρία"


Ο "Μέτοικος και η Συμμετρία" μας ταξιδεύει από το Αντάπαζαρ της Μικρασίας, στην Ιταλία του μεσοπολέμου, στην Ισπανία του Εμφυλίου και, τέλος, στη Γαλλία της Κατοχής και της Αντίστασης. Ο κεντρικός του ήρωας (μυθοπλαστικό πρόσωπο) θα γνωριστεί με σημαντικές προσωπικότητες του 20ού αιώνα, όπως ο χαράκτης Μαουρίτς Κορνέλις Έσερ και οι μαθηματικοί Αλεξάντρ Γκρόθεντικ και Μπέπο Λέβι, με τους οποίους μοιράζεται το πάθος για τη συμμετρία, την οποία ο καθένας τους αντιλαμβάνεται με διαφορετικό τρόπο. Θα γνωρίσει από κοντά και θα διαβάσει με κριτική ματιά το κίνημα των Μπουρμπακί, το σημαντικότερο ίσως μαθηματικό ρεύμα του καιρού μας και σίγουρα αυτό που άσκησε τη μεγαλύτερη επίδραση. Θα χρησιμοποιήσει τον μαθηματικό ορθολογισμό ως εργαλείο ανάλυσης ιστορικών γεγονότων, πολιτιστικών ρευμάτων, αλλά και φαινομένων της καθημερινότητας. 


Βιβλίο "Ο μέτοικος και η συμμετρία"


"Η ανάκλαση", προσπάθησε να εξηγήσει ο Δημήτρης στον Μώκι (M.C. Escher), "είναι ένας ενελικτικός μετασχηματισμός. Αν τον εφαρμόσεις δύο φορές σ' ένα αντικείμενο, θα το επαναφέρεις στην αρχική του κατάσταση". 

"Μιλάς σαν τους δασκάλους μου στο σχολείο", γέλασε ο Μώκι. "Δεν καταλαβαίνω λέξη απ' αυτά που λες, μπορώ όμως να τα εφαρμόσω. Και αυτό μου φτάνει", κατέληξε. 

(Απόσπασμα από το βιβλίο)



Στο μυθιστόρημα του Τεύκρου Μιχαηλίδη, οι μυθοπλαστικοί χαρακτήρες και τα ιστορικά πρόσωπα συναντιούνται και αλληλεπιδρούν, χτίζοντας μια ιστορία που θα μπορούσε να διαβαστεί και ως ένα χρονικό του εικοστού αιώνα. Στο εξώφυλλο του βιβλίου (εκδόσεις Πόλις) απεικονίζονται οι μαθηματικοί Αντρέ Βέιλ και Ανρί Καρτάν και η δασκάλα Σιμόν Βέιλ στο Σανσέ, όπου διεξαγόταν το συνέδριο της ομάδας Μπουρμπακί (1937).


Δευτέρα 24 Οκτωβρίου 2022

Γρίφος: το χαμένο ευρώ...

 

Τρεις φίλοι μπαίνουν σε μια κάβα και αγοράζουν ένα μπουκάλι κρασί που κοστίζει 300€, δίνοντας 100€ ο καθένας. Φεύγοντας, τους προλαβαίνει ο υπάλληλος και τους λέει πως έκανε λάθος. Το μπουκάλι στοιχίζει 295 και όχι 300€, γι' αυτό τους επιστρέφει 5€ ρέστα. Αυτοί, αφού δεν μπορούν να μοιράσουν τα 5€ στα τρία, παίρνουν ο καθένας από 1€ και δίνουν 2€ φιλοδώρημα στον υπάλληλο για την καλή του πράξη. Στο τέλος όμως σκέφτονται: «Έδωσε ο καθένας μας 100€ και πήρε πίσω 1€, άρα 99€. Τρεις φορές το 99 μας κάνει 297 και 2€ για το φιλοδώρημα, έχουμε 299€. Τι έγινε ρε παιδιά το 1€;» 



Σημείωση: Ο σημερινός γρίφος είναι διασκευή παλιού γρίφου από την εποχή της... δραχμής. Προσπεράστε το γεγονός ότι οι τρεις φίλοι ξόδεψαν αυτό το ποσό σε μια δύσκολη οικονομικά εποχή και βοηθήστε τους να βρουν το χαμένο ευρώ!


Σάββατο 1 Οκτωβρίου 2022

"Ποιος σκότωσε τον κύριο Χ;"

 

Παρίσι, 1900

Σε ένα από τα σπουδαιότερα επιστημονικά συνέδρια, ο φημισμένος Καθηγητής Χ δολοφονείται. Οι κορυφαίοι φιλόσοφοι και μαθηματικοί όλων των εποχών θεωρούνται ύποπτοι. Ποιος, τελικά, σκότωσε τον Καθηγητή Χ;


"Ποιος σκότωσε τον κύριο Χ;"


Ένα έγκλημα...

Ένα ταξίδι στον χρόνο...

Ένα απρόσμενο φινάλε...


"Ποιος σκότωσε τον κύριο Χ;"


Ίσως να γνωρίζετε ήδη το graphic novel του Θοδωρή Ανδριόπουλου, με εικονογράφηση του Θανάση Γκιόκα, αφού το βιβλίο κυκλοφορεί στην παγκόσμια αγορά. Στο graphic novel "Ποιος σκότωσε τον κύριο Χ;" η δολοφονία του Καθηγητή Χ γίνεται η αφετηρία ενός συναρπαστικού ταξιδιού στον κόσμο της φιλοσοφίας και της επιστήμης. Η ιστορία βασίζεται σε πραγματικά περιστατικά και οι ήρωές της είναι αληθινά πρόσωπα, που συντέλεσαν με μοναδικό τρόπο στην πρόοδο της επιστήμης.  


"Στα Μαθηματικά δεν υπάρχουν αδιέξοδα..."
Από τον πρόλογο του βιβλίου...

Δευτέρα 19 Σεπτεμβρίου 2022

Υπάρχει σε όλα λύση; Ταξίδι στον Κόσμο των Αρχαίων Ελληνικών Μαθηματικών

 

  H Placebo Events παρουσιάζει για πρώτη φορά στην Θεσσαλονίκη, στο περίπτερο 1 της ΔΕΘ, την εμβληματική έκθεση του Ιδρύματος Μείζονος Ελληνισμού την οποία απόλαυσαν εκατοντάδες χιλιάδες επισκέπτες στα δέκα χρόνια λειτουργίας της στο Κέντρο Πολιτισμού «Ελληνικός Κόσμος» (2003-2013). Η πιο πετυχημένη έκθεση που διοργανώθηκε ποτέ στην Αθήνα και εντυπωσίασε κοινό και ακαδημαϊκούς, είναι έτοιμη να υποδεχθεί μαθητές κι εκπαιδευτικούς, καθώς κι επισκέπτες κάθε ηλικίας.

  Πρόκειται για μια εντυπωσιακή έκθεση που αφορά την ιστορία των αρχαίων ελληνικών μαθηματικών, η οποία επιχειρεί να προβάλει μία από τις πιο ενδιαφέρουσες πτυχές του αρχαίου ελληνικού πολιτισμού και να καταδείξει, μέσω του παιδαγωγικού, διαδραστικού και ψυχαγωγικού της χαρακτήρα, πώς τα μαθηματικά μπορούν να είναι ενδιαφέροντα, ευχάριστα και κατανοητά.




  • Ελάτε να γράψουμε αριθμούς με βάση τα ιερογλυφικά σύμβολα των αρχαίων Αιγυπτίων και τη σφηνοειδή γραφή των Βαβυλώνιων.
  • Μπορείτε, αλήθεια, να μοιράσετε ακριβώς 6 καρβέλια ψωμί σε 10 άνδρες; Γνωρίστε τον τρόπο με τον οποίο οι αρχαίοι Αιγύπτιοι το κατάφεραν, όπως παρουσιάζεται στον πάπυρο Rhind, το εκτενέστερο και ένα από τα πιο γνωστά κείμενα αιγυπτιακών μαθηματικών.
  • Θα αναζητήσουμε γύρω μας σχήματα, όπως έκανε ο Θαλής και οι Ίωνες φιλόσοφοι, και θα τα σχηματίσουμε στην άμμο με ραβδί
  • Πώς υπολόγισε ο Θαλής, αυτό το «ανήσυχο πνεύμα» της αρχαιότητας, το ύψος της πυραμίδας του Χέοπα, μόνο με ένα σχοινί...και με την παρατηρητικότητά του φυσικά;
  • Θα γνωρίσουμε τον Πυθαγόρα, τον άνθρωπο που έβλεπε παντού αριθμούς και θα πειραματιστούμε με τη μουσική κλίμακα στο μονόχορδο του.
  • Υπάρχει τελικά σε όλα λύση, με κανόνα και διαβήτη; Ελάτε να γνωρίσουμε τα τρία άλυτα προβλήματα της αρχαιότητας.
  • Ποιος είπε «Δώσε μου κάπου να σταθώ και θα κουνήσω τη γη»;
  • Πως το λουτρό ενός πανεπιστήμονα μαθηματικού της αρχαιότητας έγινε αφορμή για ένα θεμελιώδη νόμο της υδροστατικής και για την πασίγνωστη λέξη «Εύρηκα»;
  • Πώς ο Ερατοσθένης κατάφερε -με ελάχιστα μέσα- να υπολογίσει με μεγάλη ακρίβεια το μήκος της περιφέρειας της Γης;
  • Ποια ερωτήματα μπορούν να μας γεννηθούν αν κοιτάξουμε τον ουρανό από τη Γη;
  • Θα πειραματιστούμε με τον άβακα, το εργαλείο με το οποίο έκαναν υπολογισμούς και πράξεις οι αρχαίοι.
  • Έχετε αναρωτηθεί από που αντλούμε τις γνώσεις μας για τα αρχαία ελληνικά μαθηματικά; (χειρόγραφα)




     Η έκθεση καλύπτει ολόκληρη την περίοδο των αρχαίων ελληνικών μαθηματικών από τον 6ο αιώνα π.Χ. έως και τον 4ο αιώνα μ.Χ. και αναφέρεται στα πιο σημαντικά «επεισόδια» και πρόσωπα της ιστορίας των ελληνικών μαθηματικών. Σύντομη αναφορά γίνεται, επίσης, στα προελληνικά μαθηματικά των Αιγυπτίων και των Βαβυλωνίων, όπως και στην πορεία των κειμένων των Ελλήνων μαθηματικών μετά το τέλος του αρχαίου κόσμου. Βασικές εφαρμογές των μαθηματικών σε άλλες επιστήμες κατά την περίοδο εκείνη, με ιδιαίτερη έμφαση στην αστρονομία, τη μαθηματική γεωγραφία και τη μουσική, αρχιτεκτονική, πολεοδομία, ναυτική τεχνολογία συμπληρώνουν την εικόνα των ελληνικών μαθηματικών.



  Οι οκτώ ενότητες της έκθεσης, οργανωμένες σε αυτόνομους σταθμούς, συνδυάζουν παραδοσιακά μέσα και νεότερες τεχνολογίες. Εκτός από τα κείμενα, τους χάρτες και τις κατασκευές, παρουσιάζονται διαδραστικές και ψηφιακές εφαρμογές, που προσφέρουν μια συναρπαστική περιήγηση στον κόσμο των αρχαίων ελληνικών μαθηματικών και επιτρέπουν την συμμετοχή και την εξερεύνηση με τρόπο απλό, διασκεδαστικό και εύληπτο. Τα  παιδιά μαθαίνουν παίζοντας και οι ενήλικοι μαγεύονται από τη γοητεία της επιστήμης. Η έκθεση, όπως και τα ίδια τα μαθηματικά, είναι αναμφίβολα για όλους.

Η έκθεση έχει συγκροτηθεί με τη φροντίδα των επιστημόνων και μουσειολόγων του ΙΜΕ και με την ευγενική συμβολή της Ελληνικής Μαθηματικής Εταιρείας. Η επιστημονική επιμέλεια της έκθεσης φέρει την υπογραφή του Γιάννη Χριστιανίδη.

Για πρώτη φορά, αναπόσπαστο κομμάτι της έκθεσης θα είναι και ένας εικονικός κινηματογράφος τελευταίας τεχνολογίας με γυαλιά virtual reality!



 

Η έκθεση τελεί υπό την Αιγίδα του Υπουργείου Παιδείας.
 

📍Διεθνής Έκθεση Θεσσαλονίκης/ Περίπτερο 1
📆Έναρξη: Σάββατο 5 Νοεμβρίου
📚Κρατήσεις σχολείων από Δευτέρα 7 Νοεμβρίου
📞Τηλέφωνο:  694 4353 761
💲Τιμές εισιτηρίων:
  • Γενική είσοδος  10€
  • Μαθητικό  7€
🌐Περισσότερες πληροφορίες: www.renegademedia.gr/μαθηματικά/