Δευτέρα 23 Δεκεμβρίου 2019

Δυσαριθμησία: Μέρος 3º - Αποτελεσματική παρέμβαση


Στο πρώτο μέρος αυτής της σειράς άρθρων, περιγράφεται η δυσαριθμησία ως ειδική μαθησιακή δυσκολία και τονίζεται η σημασία της προληπτικής διδασκαλίας. Στο δεύτερο μέρος αναλύονται τα προειδοποιητικά σημάδια σχετικά με την πιθανή ύπαρξη δυσαριθμησίας και δίνονται κάποιες πληροφορίες σχετικά με τη διαδικασία της διάγνωσης. Αυτό είναι το τρίτο και τελευταίο μέρος, όπου θα προσπαθήσω να περιγράψω, χωρίς να γίνω κουραστική, διάφορες μεθόδους παρέμβασης που εφαρμόζονται προκειμένου να καταφέρει ο μαθητής με δυσαριθμησία να υπερβεί τις δυσκολίες του. Πολλές από τις μεθόδους που αναφέρονται, είμαι σίγουρη ότι βοηθάνε όλα τα παιδιά να μάθουν μαθηματικά, είτε έχουν μαθησιακές δυσκολίες είτε όχι.

Αποτελεσματική παρέμβαση


Μετά την οικεία διάγνωση, πρέπει να παρέχεται στο παιδί με δυσαριθμησία ένα πρόγραμμα παρέμβασης ειδικά σχεδιασμένο για αυτό. Επειδή το παρόν τυπικό εκπαιδευτικό σύστημα δεν είναι συμβατό με τον τρόπο με τον οποίο μαθαίνουν τα παιδιά με δυσαριθμησία, χρειάζεται εξατομικευμένη μεταχείριση από ειδικό, φιλική προς το μαθησιακό στυλ του παιδιού. Αξίζει να τονιστεί ότι η δυσαριθμησία δεν είναι ένα πρόβλημα ή μια πάθηση ώστε να ψάχνουμε θεραπεία. Δεν περιμένουμε η δυσαριθμησία να "φύγει", αλλά βοηθάμε το παιδί να συμφιλιωθεί μαζί της, του διδάσκουμε τρόπους να την υπερβεί και να αναπτύξει τους δικούς του μηχανισμούς ώστε να κάνει σωστά τις μαθηματικές πράξεις και να επιλύει προβλήματα μαθηματικής φύσεως.

Μέσα από το εξατομικευμένο πρόγραμμα παρέμβασης:
  • Γίνεται αγωγή προσανατολισμού. Μόλις οι μαθητές βεβαιωθούν μέσω του προσανατολισμού ότι η αντίληψή τους είναι σωστή, θα είναι σε θέση να υπερβαίνουν τις αριθμητικές τους δυσκολίες με μη παραδοσιακές μεθόδους, οι οποίες θα βασίζονται στις οπτικοχωρικές τους δεξιότητες, στη φαντασία τους και στη δημιουργικότητά τους.
  • Αξιοποιείται η πολυαισθητηριακή μέθοδος διδασκαλίας, σύμφωνα με την οποία το παιδί πρέπει να δει, να ακούσει και να αισθανθεί έναν αριθμό. 
  • Διδάσκονται οι τέσσερις βασικές πράξεις με χρήση αντικειμένων, όπως μεζούρα, κέρματα, τραπουλόχαρτα, ξυλομπογιές, πλαστελίνη κλπ. βάση του οπτικού και του κιναισθητικού στυλ μάθησης που έχουν πολλά παιδιά.
  • Πραγματοποιείται ουσιαστική εκμάθηση της προπαίδειας με μη συμβατικούς τρόπους.
  • Επιλύονται τα μαθηματικά προβλήματα αφού πρώτα οπτικοποιηθούν σε μια εικόνα ή ένα σχήμα.
  • Τονώνεται η αυτοπεποίθηση του παιδιού μέσα από διαρκείς επιβραβεύσεις των προσπαθειών του.
  • Γίνεται διδασκαλία των Μαθηματικών μέσα από εφαρμογές στη σύγχρονη καθημερινότητα (ίντερνετ, βιντεοπαιχνίδια, GPS κλπ) και με χρήση των Νέων Τεχνολογιών.
  • Μέσα από το παιχνίδι, μπορούμε πολύ συχνά να πάρουμε αφορμή για τη διδασκαλία μιας μαθηματικής έννοιας. 

Διδάσκουμε στο παιδί ότι μια πρόσθεση έχει δύο αντίστοιχες αφαιρέσεις, όχι με τον κλασικό γραπτό τρόπο, αλλά με αριθμούς από μαγνητάκια πάνω σε μεταλλικό πίνακα. Σύμφωνα με την πολυαισθητηριακή μέθοδο, το παιδί αγγίζει τους αριθμούς και τους αισθάνεται ως κάτι απτό και όχι ως μια αφηρημένη έννοια. Έτσι, αντιλαμβάνεται ότι ο ίδιος αριθμός που ήταν στο ρόλο του αθροίσματος (το 15) γίνεται έπειτα αφαιρετέος.
Διδάσκουμε στο παιδί ότι μια πρόσθεση έχει δύο αντίστοιχες αφαιρέσεις, όχι με τον κλασικό γραπτό τρόπο, αλλά με αριθμούς από μαγνητάκια πάνω σε μεταλλικό πίνακα. Σύμφωνα με την πολυαισθητηριακή μέθοδο, το παιδί αγγίζει τους αριθμούς και τους αισθάνεται ως κάτι απτό και όχι ως μια αφηρημένη έννοια. Έτσι, αντιλαμβάνεται ότι ο ίδιος αριθμός που ήταν στο ρόλο του αθροίσματος (το 15) γίνεται έπειτα αφαιρετέος.  


Σύμφωνα πάλι με την πολυαισθητηριακή μέθοδο, διδάσκουμε τον πολλαπλασιασμό χρησιμοποιώντας ένα πλήθος όμοιων αντικειμένων (εδώ: 12 χάντρες). Σ' αυτή την περίπτωση οι αριθμοί μπορούν να μη γράφονται με τα σύμβολά τους, αλλά να παριστάνονται μόνο μέσα από το πλήθος των χαντρών. Έτσι, το παιδί με δυσαριθμησία δεν θα μπερδεύεται. Το παιδί, αξιοποιώντας τις οπτικοχωρικές του δεξιότητες, πρέπει να τοποθετήσει τις χάντρες με μια συγκεκριμένη σειρά (3x4 ή 2x6) και έπειτα να διαπιστώσει ότι καθένα από τα δύο γινόμενα ισούται με 12.
Σύμφωνα πάλι με την πολυαισθητηριακή μέθοδο, διδάσκουμε τον πολλαπλασιασμό χρησιμοποιώντας ένα πλήθος όμοιων αντικειμένων (εδώ: 12 χάντρες). Σ' αυτή την περίπτωση οι αριθμοί μπορούν να μη γράφονται με τα σύμβολά τους, αλλά να παριστάνονται μόνο μέσα από το πλήθος των χαντρών. Έτσι, το παιδί με δυσαριθμησία δεν θα μπερδεύεται. Το παιδί, αξιοποιώντας τις οπτικοχωρικές του δεξιότητες, πρέπει να τοποθετήσει τις χάντρες με μια συγκεκριμένη σειρά (3x4 ή 2x6) και έπειτα να διαπιστώσει ότι καθένα από τα δύο γινόμενα ισούται με 12.



Αναγωγή στην κλασματική μονάδα με τις ξυλομπογιές; Για να υπολογίσει ο μικρός μαθητής πόσο είναι το 1/4 του 20, χωρίζουμε τις 20 ξυλομπογιές του σε 4 ομάδες, με την κάθε ομάδα να αποτελείται από 5 ξυλομπογιές.
Αναγωγή στην κλασματική μονάδα με τις ξυλομπογιές;
Για να υπολογίσει ο μικρός μαθητής πόσο είναι το 1/4 του 20, χωρίζουμε τις 20 ξυλομπογιές του σε 4 ομάδες, με την κάθε ομάδα να αποτελείται από 5 ξυλομπογιές. 


Αυτή η εξατομίκευση της διδασκαλίας, η καθημερινή εξάσκηση και οι στοχευμένες διδακτικές εμπειρίες εφοδιάζουν το παιδί με τα κατάλληλα εργαλεία που το βοηθούν να μάθει να χειρίζεται σωστά τους αριθμούς με τον δικό του, μοναδικό τρόπο.



"Κάθε παιδί μπορεί να μάθει και να αγαπήσει τα μαθηματικά, αρκεί να τα διδαχτεί με τον τρόπο που του ταιριάζει,αξιοποιώντας τα δυνατά του σημεία".
(Ιωάννης Καραγιαννάκης) 


Βιβλιογραφία
Αγαλιώτης, Ι. (2000). Μαθησιακές Δυσκολίες στα Μαθηματικά. Αιτιολογία, αξιολόγηση, αντιμετώπιση. Αθήνα: Ελληνικά Γράμματα.
Hannel, G. (2013) (2nd edition). Dyscalculia: Action plans for successful learning in Mathematics. New York: Routledge.
Karagiannakis, G., & Baccaglini-Frank, A. (2014). The De-Di-Ma battery: A tool for identifying students' mathematical learning profiles. Health Psychology Review, 2(4), 291-297.
Rousselle, L., & Noel. M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361-395.
ΣτασινόςΔ. (2003) (Επιμ). Μαθησιακές δυσκολίες του παιδιού και του εφήβου. Η εμπειρία της σύγχρονης Ευρώπης. Αθήνα: Gutenberg.
Shams. L. & Seitz, A. R. (2008). Benefits of Multisensory Learning. Trends in Cognitive Sciences, 12(11), 411-417.
Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. Human behavior, learning and the developing brain: Atypical development, 2, 212-237.
Σημειώσεις από τα βιωματικά σεμινάρια του δρ. Καραγιαννάκη Ιωάννη: "Δυσαριθμησία: Στρατηγικές αντιμετώπισης των μαθησιακών δυσκολιών στα Μαθηματικά μαθητών πρωτοβάθμιας και δευτεροβάθμιας εκπαίδευσης" (17/10/2015) & "Αντιμετώπιση των δυσκολιών στα Μαθηματικά με έξυπνο τρόπο" (20/05/2017), Διεπιστημονικό Κέντρο Ηπείρου, Ιωάννινα.

Δευτέρα 9 Δεκεμβρίου 2019

Κυριακή 1 Δεκεμβρίου 2019

Δυσαριθμησία: Μέρος 2º - Προειδοποιητικά σημάδια και έγκαιρη διάγνωση


Για να διαβάσετε το πρώτο μέρος σχετικά με το τι είναι η δυσαριθμησία, πατήστε εδώ.


παιδί που μετρά με τον άβακα



Τα "ύποπτα" σημάδια


Παλιότερα, εξαιτίας της άγνοιας γύρω από τη δυσαριθμησία, πολλά παιδιά αποτύγχαναν στα Μαθηματικά στο σχολείο και, σαν να μην έφτανε αυτό, συχνά νόμιζαν ότι έφταιγαν εκείνα για τις αποτυχίες τους. Στη σύγχρονη εποχή, γονείς και εκπαιδευτικοί έχουμε συνεχώς τα μάτια μας ανοιχτά για την πρώιμη ανίχνευση "ύποπτων" συμπτωμάτων, ώστε να απευθυνθούμε έγκαιρα στους ειδικούς. Κάποια από τα σημάδια που προειδοποιούν για την πιθανή ύπαρξη δυσαριθμησίας είναι τα εξής:

Για ένα παιδί ηλικίας έως 6 ετών:
  • Δυσκολεύεται στο να μαθαίνει να μετρά.
  • Δυσκολεύεται στο να αναγνωρίζει τα σύμβολα των αριθμών, π.χ. αδυνατεί να αντιστοιχίσει το σύμβολο "4" με τη λέξη "τέσσερα".
  • Δυσκολεύεται να ακολουθήσει οδηγίες που περιλαμβάνουν αριθμούς, π.χ. "Δώσε μου δύο καραμέλες" ή "Φέρε τρεις μαρκαδόρους".
  • Δυσκολεύεται να κατανοήσει την αξία των μονοψήφιων αριθμών, δηλαδή να αντιστοιχίζει το πλήθος κάποιων αντικειμένων με έναν αριθμό. Π.χ. δεν μπορεί με ευκολία να απαντήσει στην ερώτηση "Πόσα μπισκότα έμειναν;" ή απαντά συχνά λανθασμένα.
  • Δυσκολεύεται στη χρήση χρονικών εννοιών, π.χ. σήμερα, αύριο, χθες.
  • Δυσκολεύεται στη χρήση χωρικών εννοιών, π.χ. μπροστά, πίσω, πάνω, κάτω.

Για έναν μαθητή Δημοτικού:
  • Συχνά λέει τους αριθμούς με λανθασμένη σειρά.
  • Δυσκολεύεται στην εκτέλεση των τεσσάρων βασικών πράξεων (πρόσθεση, αφαίρεση, πολλαπλασιασμός, διαίρεση). Πιθανόν να μπερδεύει τα σύμβολα των πράξεων μεταξύ τους, όπως το + με το x, γεγονός που μπορεί να σχετίζεται με την ύπαρξη δυσλεξίας. Δυσκολεύεται να κατανοήσει τη διαφορά μεταξύ της πρόσθεσης και της αφαίρεσης.
  • Δυσκολεύεται στην εκμάθηση της προπαίδειας με τον παραδοσιακό τρόπο. Αυτό επίσης σχετίζεται με τη δυσλεξία, γιατί το "ποίημα" της προπαίδειας είναι περισσότερο λεκτικό παρά αριθμητικό.
  • Αποφεύγει τη χρήση των αριθμητικών συμβόλων, κάνοντας πρόσθεση ή αφαίρεση με τα δάχτυλα -ενώ οι συμμαθητές του έχουν σταματήσει να χρησιμοποιούν τη μέθοδο αυτή, χρησιμοποιώντας αντικείμενα ή ζωγραφίζοντας μικρές γραμμές στο χαρτί. Αυτές είναι στρατηγικές που πολλές φορές αναπτύσσουν μόνα τους τα παιδιά στην προσπάθειά τους να υπερβούν τις δυσκολίες τους και καλό είναι να μην αποθαρρύνονται από εμάς όταν τις εφαρμόζουν.
  • Δυσκολεύεται στην κατανόηση μαθηματικών προβλημάτων και στη διαδικασία επίλυσής τους.
  • Ακόμη κι αν γνωρίζει τη λύση σε ένα πρόβλημα, ίσως είναι αργό στην εκτέλεση των πράξεων με χαρτί και μολύβι. Αυτό πιθανόν να σχετίζεται με τη δυσλεξία και συμβαίνει διότι το παιδί δεν βασίζεται στον τυπικό χειρισμό των αριθμών, αλλά προτιμά έναν "δικό του" τρόπο συλλογισμού, όπου χρησιμοποιεί τις οπτικοχωρικές του δεξιότητες για να οπτικοποιήσει το πρόβλημα. Στην περίπτωση αυτή, το παιδί πρέπει να ενθαρρύνεται στη χρήση των οπτικοχωρικών του δεξιοτήτων. Οι δεξιότητες αυτές μπορούν αργότερα, κατά τη δευτεροβάθμια εκπαίδευση, να το βοηθήσουν να υπερέχει στα ανώτερα μαθηματικά όπως η τριγωνομετρία και η Ευκλείδεια Γεωμετρία.
  • Δυσκολεύεται να μάθει τη μαθηματική ορολογία, π.χ. άθροισμα, γινόμενο, πηλίκο, εκατοστό.
  • Παρουσιάζει ελλείμματα στη μνήμη εργασίας και στη βραχύχρονη μνήμη. Έχει, για παράδειγμα, τη δυσκολία να μην ενθυμείται το είδος της μαθηματικής πράξης που βρίσκεται σε εξέλιξη (π.χ. πρόσθεση), με αποτέλεσμα να τη μετατρέπει σε άλλη (π.χ. αφαίρεση). 
  • Δυσκολεύεται στη σειροθέτηση, π.χ. να λέει τις ημέρες της εβδομάδας ή τους μήνες με τη σειρά.
  • Δυσκολεύεται να θυμάται γεγονότα με τη σειρά κατά την οποία συνέβησαν.
  • Δυσκολεύεται να μάθει να λέει την ώρα κοιτώντας το αναλογικό ρολόι.
  • Δυσκολεύεται στο να κρατάει το σκορ κατά τη διάρκεια ενός παιχνιδιού.
  • Δυσκολεύεται στη χρήση χωρικών εννοιών, π.χ. δεξιά, αριστερά.
  • Δυσκολεύεται να μάθει τα σημεία του ορίζοντα (Βορράς, Νότος, Δύση, Ανατολή) και γενικότερα να προσανατολίζεται.
  • Δυσκολεύεται στο να ταξινομεί αντικείμενα ως προς το σχήμα ή το χρώμα ή το μέγεθός τους.
  • Παρουσιάζει άγχος και μαθηματική φοβία εξαιτίας των δυσκολιών του με τους αριθμούς, παραπονιέται ότι δεν νιώθει καλά όταν έχει να λύσει ασκήσεις Μαθηματικών.

Για έναν έφηβο ή ενήλικα:
  • Δυσκολεύεται στην εκτίμηση του κόστους ενός προϊόντος.
  • Δυσκολεύεται στην κατανόηση και στη χρήση των ποσοστών.
  • Δυσκολεύεται να εφαρμόσει τα κλάσματα στην καθημερινή ζωή, π.χ. τα 10 λεπτά του ευρώ είναι το ένα δέκατο του ευρώ ή 6 μήνες είναι μισό έτος.
  • Δυσκολεύεται στη διαχείριση των χρημάτων, π.χ. να υπολογίσει σωστά τα ρέστα και στην κατανόηση της αξίας τους.
  • Δυσκολεύεται στη διαχείριση και στην οργάνωση του χρόνου του.
  • Αντιμετωπίζει πρόβλημα συνέπειας στην ώρα.
  • Δυσκολεύεται στην οργάνωση του χώρου.
  • Δυσκολεύεται στον προσανατολισμό και να ακολουθεί χάρτες. Ενδεχόμενες δυσκολίες στον προσανατολισμό και στη διαχείριση των χωρικών εννοιών μπορούν να επηρεάσουν αρνητικά την οδήγηση ενός οχήματος.
  • Δυσκολεύεται να διαβάσει μια γραφική παράσταση ή ένα στατιστικό διάγραμμα, π.χ. ένα ραβδόγραμμα.
  • Δυσκολεύεται στην επίλυση μαθηματικών προβλημάτων και γενικότερα προβλημάτων που περιλαμβάνουν αριθμούς.

Διάγνωση της δυσαριθμησίας


Πρέπει να τονιστεί ότι οι παραπάνω ενδείξεις είναι απλώς προειδοποιητικά σημάδια και σε καμία περίπτωση δεν αποτελούν διαγνωστικά κριτήρια για τη δυσαριθμησία, η διάγνωση/διαφοροδιάγνωση της οποίας γίνεται αποκλειστικά από τον αρμόδιο διαγνωστικό φορέα. Σήμερα στη χώρα μας, ο αρμόδιος κρατικός φορέας είναι τα Κέντρα Εκπαιδευτικής και Συμβουλευτικής Υποστήριξης (Κ.Ε.Σ.Υ.). Σε περίπτωση διάγνωσης δυσαριθμησίας ή άλλης ειδικής μαθησιακής δυσκολίας, οι γονείς καταθέτουν τη διάγνωση στο σχολείο όπου φοιτά το παιδί, ώστε να εξετάζεται με τον τρόπο που του ταιριάζει. Εκτός από τα Κ.Ε.Σ.Υ., υπάρχει και πληθώρα ιδιωτικών κέντρων για διάγνωση και παρέμβαση. Στα ιδιωτικά κέντρα, σε αντίθεση με τα Κ.Ε.Σ.Υ., οι γονείς έχουν άμεσα μια αξιολόγηση για το παιδί τους. Η ιδιωτική, όμως, διάγνωση δεν μπορεί να κατατεθεί στο σχολείο του παιδιού.

Μια ακριβής διάγνωση γίνεται μόνο μέσω μιας κλινικής αξιολόγησης από τη διεπιστημονική ομάδα, η οποία χορηγεί στο παιδί ειδικά τεστ (WISC, Αθηνά-Test κ.ά.), σταθμισμένα για την εκάστοτε ηλικία. Όσο πιο νωρίς γίνεται η διάγνωση, τόσο το καλύτερο, γιατί δεν περιμένουμε τη σχολική αποτυχία ώστε να κινητοποιηθούμε, αλλά δρούμε προληπτικά και παρεμβαίνουμε πρώιμα στις δυσκολίες του παιδιού.


Βιβλιογραφία
Αγαλιώτης, Ι. (2000). Μαθησιακές Δυσκολίες στα Μαθηματικά. Αιτιολογία, αξιολόγηση, αντιμετώπιση. Αθήνα: Ελληνικά Γράμματα.
Hannel, G. (2013) (2nd edition). Dyscalculia: Action plans for successful learning in Mathematics. New York: Routledge.
Karagiannakis, G., & Baccaglini-Frank, A. (2014). The De-Di-Ma battery: A tool for identifying students' mathematical learning profiles. Health Psychology Review, 2(4), 291-297.
Κουλάκογλου, Κ. (2017). Ψυχομετρία και Ψυχολογική Αξιολόγηση. Αθήνα: Πατάκη.
Rousselle, L., & Noel. M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361-395.
ΣτασινόςΔ. (2003) (Επιμ). Μαθησιακές δυσκολίες του παιδιού και του εφήβου. Η εμπειρία της σύγχρονης Ευρώπης. Αθήνα: Gutenberg.
Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. Human behavior, learning and the developing brain: Atypical development, 2, 212-237.
Σημειώσεις από τα βιωματικά σεμινάρια του δρ. Καραγιαννάκη Ιωάννη: "Δυσαριθμησία: Στρατηγικές αντιμετώπισης των μαθησιακών δυσκολιών στα Μαθηματικά μαθητών πρωτοβάθμιας και δευτεροβάθμιας εκπαίδευσης" (17/10/2015) & "Αντιμετώπιση των δυσκολιών στα Μαθηματικά με έξυπνο τρόπο" (20/05/2017), Διεπιστημονικό Κέντρο Ηπείρου, Ιωάννινα.