Είναι προφανές ότι ισχύει
63 + 48 = 27 + 84 ;
Πρόκειται για μια ορθή μαθηματική πρόταση, χωρίς ενδιαφέρον, που επαληθεύεται σε δευτερόλεπτα. Είναι όμως προφανής; Αν "προφανής" σημαίνει ότι ο λόγος για τον οποίο ισχύει είναι σαφώς κατανοητός, χωρίς ανάγκη επαλήθευσης, τότε οι περισσότεροι θα απαντούσαν αρνητικά.
Είναι, τώρα, προφανές ότι
(27 + 36) + 48 = 27 + (36 + 48) ;
Ασφαλώς, για την πλειοψηφία: η ενστικτώδης (και ορθή) αντίδραση είναι ότι ο τρόπος με τον οποίο "συμμαζεύουμε" τους όρους ενός αθροίσματος δεν μπορεί να επηρεάσει το αποτέλεσμα. Ο έγκυρος μαθηματικός όρος για το συμμάζεμα αυτό και την τοποθέτηση των αριθμών σε "παρέες" είναι "προσεταιρίζουμε" και η ενστικτώδης αντίδραση είναι η αποδοχή της προσεταιριστικής ιδιότητας της πρόσθεσης για πραγματικούς αριθμούς:
Την προσεταιριστική ιδιότητα διαθέτει και η πράξη του πολλαπλασιασμού στους πραγματικούς αριθμούς:
Εκτός, όμως, από το σύνολο των πραγματικών αριθμών εφοδιασμένο με τις πράξεις τις πρόσθεσης και του πολλαπλασιασμού, οι μαθηματικοί ενδιαφέρθηκαν να ορίσουν και άλλα σύνολα, πιο αφηρημένα, για πολλούς και διάφορους σκοπούς. Η Γραμμική Άλγεβρα ασχολείται με διάφορα είδη πράξεων (όπως η πρόσθεση ή ο πολλαπλασιασμός) για διάφορα είδη αντικειμένων (όχι αναγκαστικά πραγματικούς αριθμούς). Μας ενδιαφέρει αν η πράξη με την οποία έχει εφοδιαστεί ένα σύνολο είναι, μεταξύ άλλων, προσεταιριστική.
Προσεταιριστική πράξη
Μια διμελής πράξη ✱ σ' ένα σύνολο S λέγεται προσεταιριστική, αν (α ✱ β) ✱ γ = α ✱ (β ✱ γ), για κάθε α, β, γ ∈ S.
Είναι άδικο να παραβλέψουμε την προσεταιριστική ιδιότητα ως κάτι τετριμμένο. Η προσεταιριστικότητα της πράξης μπορεί να μην ισχύει πάντα, αλλά, ακόμη κι αν ισχύει, δεν είναι και τόσο προφανής. Στον κόσμο της Γραμμικής Άλγεβρας, αν και οι μη προσεταιριστικές πράξεις είναι σπάνιες, πράξεις για τις οποίες η προσεταιριστικότητα δεν είναι αυτονόητη, συναντώνται συχνότερα.
Κουίζ:
1. Ορίζουμε μια νέα πρόσθεση στους πραγματικούς αριθμούς, συμβολιζόμενη ως ⊕, όπου:
α⊕β = 2α + 2β
Είναι η ⊕ προσεταιριστική;
Σχόλιο: Το + στο δεύτερο μέλος σημαίνει τη συνήθη πρόσθεση.
2. Στο σύνολο {0, 1, 2} που αποτελείται από τρία στοιχεία, ορίζουμε έναν νέο πολλαπλασιασμό, που τον συμβολίζουμε με ⊗. Στον παρακάτω πίνακα πολλαπλασιασμού βλέπουμε πώς ορίζεται ο πολλαπλασιασμός ⊗:
⊗ | 0 | 1 | 2 |
0 | 0 | 0 | 0 |
1 | 0 | 1 | 2 |
2 | 0 | 2 | 1 |
Είναι η ⊗ προσεταιριστική;
Σχόλιο: Η πράξη αυτή καλείται στη Γραμμική Άλγεβρα "πολλαπλασιασμός modulo 3" (mod3, μοδίω 3), ενώ το σύνολο {0, 1, 2} καλείται "οι ακέραιοι modulo 3" και συμβολίζεται ως ℤ3 .
Πηγές:
John B. Fraleigh (2003, 4η έκδοση). Εισαγωγή στην Άλγεβρα (μετ. Γιαννόπουλος). Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο (Το πρωτότυπο έργο δημοσιεύθηκε το 1967).
Paul Halmos (2012). Προβλήματα Γραμμικής Άλγεβρας (μετ. Τουμάσης & Γραμματίκας). Ευρύαλος Απόλλων, Τρίκαλα (Το πρωτότυπο έργο δημοσιεύθηκε το 1995).
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου