Τετάρτη 12 Μαρτίου 2025

Η εκθετική αύξηση στον πολλαπλασιασμό των βακτηρίων (+γρίφοι)


📚Στη βιολογία και στη μικροβιολογία, ο όρος αύξηση ή ανάπτυξη αναφέρεται στον πολλαπλασιασμό (αφυλετική αναπαραγωγή) ενός μικροβιακού κυττάρου. Τα βακτήρια αναπαράγονται μέσω μιας διαδικασίας που ονομάζεται δυαδική διάσπαση ή διχοτόμηση. Ένα κύτταρο διαιρείται σε δύο κύτταρα και κάθε νέο κύτταρο είναι ίδιο με το αρχικό.


Πολλαπλασιασμός βακτηρίων

Το 1 βακτήριο, λοιπόν, γίνεται 2.

Μετά από συγκεκριμένο χρονικό διάστημα (που εξαρτάται από το είδος του μικροοργανισμού και τις περιβαλλοντικές συνθήκες) το κάθε βακτήριο διαιρείται ξανά σε δύο βακτήρια. Έτσι τα 2 βακτήρια γίνονται 4

Στη συνέχεια, αφού περάσει το ίδιο χρονικό διάστημα, τα 4 βακτήρια διχοτομούνται κι αυτά και γίνονται 8.

Με νέα διχοτόμηση, τα 8 βακτήρια γίνονται 16.

Τα 16 βακτήρια γίνονται 32.

Τα 32 βακτήρια γίνονται 64 και ούτω καθεξής.



👉Οι αριθμοί των βακτηρίων που είναι σημειωμένοι έντονα είναι οι δυνάμεις του 2.

1=20

2=21

4=22

8=23

16=24

32=25

64=26

128=27

256=28

512=29

1.024=210

και ούτω καθεξής.


ℹ️Κάθε φορά ο αριθμός στον εκθέτη δείχνει πόσες διχοτομήσεις έχουν γίνει στα βακτήρια. Γι' αυτό και αυτή η διαδικασία ονομάζεται εκθετική συνάρτηση.


Η εκθετική αύξηση στον πολλαπλασιασμό των βακτηρίων


❓Με βάση αυτές τις γνώσεις, μπορείτε να λύσετε τους παρακάτω γρίφους-προβλήματα βιολογίας; 



🥇Γρίφος #1

Ένας πληθυσμός μικροοργανισμών (αμοιβάδας) διπλασιάζεται κάθε 24 ώρες. Μέσα σε 8 ημέρες, ο πληθυσμός έχει φτάσει στα 100 εκατομμύρια. Μετά από πόσες ακόμη μέρες θα έχει φτάσει ο πληθυσμός στα 800 εκατομμύρια; (Υποθέτουμε ότι οι συνθήκες είναι ιδανικές). 

Πηγή: Ιστολόγιο Μαθηματικών Γρίφων και Σκακιού Papaveri48



🥈Γρίφος #2

Ένα βακτήριο E.coli διπλασιάζεται κάθε 20 λεπτά. Από 1 μόνο βακτήριο και αν υποθέσουμε ότι οι συνθήκες είναι ιδανικές, πόσα θα είναι τα βακτήρια μετά από 10 ώρες;



🥉Γρίφος #3

Μια βακτηριακή καλλιέργεια που ξεκίνησε από 2 βακτήρια, μέσα σε χρόνο 60 λεπτών οκταπλασίασε τον πληθυσμό της. Κάθε πόσα λεπτά αναπαράγονται τα βακτήρια που την αποτελούν;

Πηγή: Βιολογία Β΄ Γενικού Λυκείου, ΙΤΥΕ Διοφαντος, 2023 (Πρώην βιβλίο Βιολογίας Γενικής Παιδείας Γ΄ Γενικού Λυκείου, ΟΕΔΒ, 2004)



ℹ️Οι βιολόγοι, οι μικροβιολόγοι, οι επιδημιολόγοι και γενικά οι επιστήμονες υγείας χρησιμοποιούν έναν τύπο που υπολογίζει την εκθετική αύξηση των βακτηρίων:

εκθετική συνάρτηση - πολλαπλασιασμός βακτηρίων


🔬Ευχαριστώ τους βιολόγους του σχολείου μου, που έλεγξαν τις παραπάνω πληροφορίες!


Κυριακή 9 Μαρτίου 2025

"1.101.101,10..."


Στην ελληνική ταινία του 1958 "Μια ζωή την έχουμε", ο Κλέων (Δημήτρης Χορν), υπάλληλος της Εμποροπιστωτικής Τράπεζας, γίνεται ξαφνικά πάμπλουτος. Η στιγμή όπου ανακαλύπτει ένα ανεξήγητο λογιστικό λάθος που αφήνει περίσσευμα "ένα εκατομμύριο, εκατόν μία χιλιάδες, εκατόν μία και δέκα" δραχμές είναι αξέχαστη...



Σάββατο 8 Μαρτίου 2025

Γρίφος: Ειλικρινής πλειοψηφία


Γρίφος_ειλικρινής πλειοψηφία_Χημικός και αλχημιστής


Εκατό άτομα -χημικοί και αλχημιστές- συμμετείχαν σε ένα επιστημονικό συνέδριο. Τους ετέθη το εξής ερώτημα: Ποια ομάδα είναι πολυπληθέστερη σε αυτή τη συνάντηση (χωρίς να συμπεριλάβετε τον εαυτό σας), οι χημικοί ή οι αλχημιστές; Οι πρώτοι πενήντα απάντησαν ότι περισσότεροι ήταν οι αλχημιστές. Γνωρίζουμε ότι οι αλχημιστές λένε πάντα ψέματα, ενώ οι χημικοί πάντα αλήθεια.

Πόσοι χημικοί συμμετείχαν στο συνέδριο; 


Δευτέρα 3 Μαρτίου 2025

Ο χαρταετός!

 

Γράφει ο Αθ. Δ. Γκίκας, Μαθηματικός


Δημήτρης Μυταράς (1934-2017) - "Χαρταετοί"
Δημήτρης Μυταράς (1934-2017) - "Χαρταετοί"

 

Κάποιες ατέλειωτες νύχτες φέρνω πίσω από τα πέλαγα του χρόνου τα βιώματά μου τα παλιά και ακούραστα. Τα βιώματά μου είναι η μαγιά για το κείμενο που ακολουθεί. Λες πάντα καλύτερα την ιστορία που έχεις κατακτήσει. Αν δεν έχεις τα βιώματα δεν έχεις τίποτα. Τα αληθινότερα κείμενα είναι εκείνα που έχουν αφετηρία τον εαυτό μας. Θα επιχειρήσω να εξισορροπήσω την αλήθεια με την αναγνωσιμότητα.
Έθιμο της Καθαράς Δευτέρας είναι το πέταγμα του χαρταετού. Η οικογένεια αφού επιβιβαστεί στο αυτοκίνητό της, πάρει και τα απαραίτητα φαγώσιμα, θα σταματήσει στο κοντινό περίπτερο ν’ αγοράσει το χαρταετό, έτσι για να διατηρηθεί το έθιμο. 
Ποιο χαρταετό θα μου πείτε; Αυτόν με τις φιγούρες από σύγχρονα κόμικς στην επιφάνειά του ή με σήμα κάποιας ποδοσφαιρικής ομάδας. Και αφού πάνε στην εξοχή θ’ αρχίσει η διαδικασία το πετάγματος πλην ματαίως, τις περισσότερες φορές.


Η σκηνή σαν και τούτη:


-  Ο μικρός θα γκρινιάζει γιατί ο δικός του δεν «σηκώθηκε».
- Ο πατέρας μπλεγμένος μες στους σπάγγους και το ξερόχορτο θα ρίχνει τις ευθύνες στη μητέρα γιατί δεν του έκανε καλό «κεφάλι».
-     Όταν ξεμπλέξει με το λιγοστό σπάγγο που θα του έχει απομείνει θα τρέχει σαν τρελλός στα χωράφια για να πάρει λίγο ύψος ο αετός. Ύστερα περήφανος θα εξομολογείται:  Τον «σήκωσα» και φέτος !


Σπύρος Βασιλείου (1903-1985) - "Τα σαρακοστιανά" (1950)

Η ημέρα θα κυλίσει με άριστες επιδόσεις στην κατανάλωση λαγάνας, ταραμοσαλάτας, καλαμαριών καβουριών και άλλων «σαρακοστιανών» και περιχαρείς θα επιστρέψουν στο σπίτι. Περιχαρείς; Όλο και κάποιοι θα νοιώθουν εκείνο το κενό μέσα τους, το ονομαζόμενο «μεθεόρτιο σύνδρομο» από τους ψυχολόγους, που προέρχεται από τις πολλές ελπίδες που είχαν στηρίξει στην Καθαροδευτεριάτικη έξοδο και δεν επαληθεύτηκαν.
Και πώς να μην γίνει έτσι. Πόσο κοπίασαν για τον αετό; Τί ξέρουν για το σκελετό του με τα «ψυχοκάλαμα» ; Πόσο κοπίασαν για τα ζύγια του; Ας είναι καλά οι πήχες από το ξυλουργείο κι η βιοτεχνία που φτιάχνει αετούς χωρίς «ψυχή»; Πώς ν’ ασχοληθείς με το πέταγμα, αφού δεν καταπιάστηκες ποτέ με την κατασκευή του και μέσα από αυτή, διδάσκοντας την στα παιδιά σου, να δίνεις και να παίρνεις και συ χαρά; Χωρίς περιστροφές θα πω ότι τα πράγματα στις ημέρες μου ήταν καλύτερα. Τούτο όχι από συνήθεια που έχουμε οι παλιότεροι να ωραιοποιούμε καταστάσεις που ζήσαμε… και τότε δεν ήταν όλα ωραία. Άλλα πράγματα ήταν χειρότερα από σήμερα.
Όμως επειδή ο λόγος πρέπει να είναι «ορθός αποδεικτικός», όπως στα ΜΑΘΗΜΑΤΙΚΑ, θα επιχειρήσω τη σύγκριση κι ας βγάλει ο αναγνώστης τα συμπεράσματά του.


Πρώτα πρώτα για μας το πέταγμα του αετού δεν ήταν σαν το «στιγμιαίο αδίκημα» δηλ. αγοράζω την Κ. Δευτέρα το πρωί, κάνω προσπάθεια για πέταγμα και τελείωσα. Ήταν ολόκληρη ιεροτελεστία που άρχιζε μια δυο εβδομάδες πριν. Όταν είσαι νέος έχεις το χρόνο στο πλευρό σου ανεξάντλητο κα όλα είναι συναρπαστικά.

- Πρώτα τα καλάμια για το σκελετό. Ας ήταν καλά τα μαντριά προβάτων. Και σήμερα αν θέλει κάποιος μπορεί να βρει δίπλα σε  αυλάκια.
- Μετά τη φροντίδα για τις κόλλες, το ζυμάρι που θα τις κολλούσε.
- Ο σπάγγος ο κερωμένος για να κρατάει καλύτερα.
- Κουρέλια ή φύλλα από το κιντρινόχρωμο πρόχειρο σχολικό τετράδιο, για την ουρά. Βλέπεις δεν έφτανε η «δραχμή» ν’ αγοράσεις και δεύτερη κόλλα για τις φούντες της ουράς.


Τα δύσκολα άρχιζαν στην συναρμολόγηση. Πώς θα κατορθώσεις να φτιάξεις το κανονικό εξάγωνο. Το μυστικό πήγαινε από τα μεγαλύτερα παιδιά της παρέας στα μικρότερα έτσι εμπειρικά. Εγώ το διδάχτηκα από τον ξαδελφό μου Κ. Γκίκα γεωπόνο, που με τα μακριά και επιδέξια δάκτυλά του έκανε τους καλύτερους χαρταετούς. Θαύμαζα τους αετούς του. Σήμερα δε θαυμάζουμε αλλά θαμπωνόμαστε από ένα συμβάν επιτυχίας. Παλαιά υπήρχαν πρότυπα σε γειτονιές, στο σχολείο, στα αθλήματα, σε εργασιακούς χώρους, όπου μια δεξιότητα μας κέντριζε σε άμιλλα. Θαυμασμός εσωτερικός . ήταν αναμέτρηση με τους εαυτούς μας. Γιατί ο Κώστας φτιάχνει αετό και να μη μπορώ και γω! Έτσι όχι μόνο μαθαίναμε, αλλά συγχρόνως γινόμασταν καράβι που μετέφερε τη γνώση στο επόμενο λιμάνι της αρχέγονης αλυσίδας ζωής. Αν το φορτίο το παραδώσαμε σωστά, τότε η ζωή μας έχει νόημα.


Στην παρουσίαση της κατασκευής θα ακολουθήσω την αρχή της εποπτικότητας, με σκοπό διδακτικό, αισθητικό και κύρια τεκμηριωτικό. Αφού και τα τρία καλάμια ΑΔ, ΓΖ, ΒΕ κεντραριζόντουσαν στο μέσο Ο με καρφίτσα αρχικά για να μπορεί να περιστρέφονται, με την αρχή του σπάγγου στο σημείο Α μετρούσαμε μέχρι το Ο και δέναμε στο Β. Πάλι από το Β μετρούσαμε μέχρι το Ο και δέναμε στο Γ κ.λ.π. Έτσι το εξάγωνο ήταν έτοιμο. Έπρεπε να γίνω Μαθηματικός για να δώσω τη θεωρητική εξήγηση στην κατασκευή του κανονικού εξαγώνου μ’ αυτόν τον τρόπο που περιέγραψα.

 

 

Σχήμα του Αθ.Δ. Γκίκα με τα μαθηματικά του χαρταετού
Σχήμα του Αθ.Δ. Γκίκα με τα μαθηματικά του χαρταετού

 

Η εμπειρική κατασκευή στηρίζεται στην Μαθηματική αλήθεια ότι:
Η πλευρά του κανονικού εξαγώνου ΑΒ = ΑΟ = R = ακτίνα περιγεγραμμένου κύκλου.

Από την κατασκευή του αετού ξεκινούσα στη Β΄ Λυκείου την διδασκαλία του κανονικού εξαγώνου, έτσι όπως απαιτεί η διδακτική των Μαθηματικών από την εμπειρία στο θεωρητικό μοντέλο και αντίστροφα.

 

από την εμπειρία στο θεωρητικό μοντέλο και αντίστροφα


Στα πρώτα χρόνια υπήρχαν μαθητές, που βοηθούσαν στο πέρασμα από την εμπειρία στη θεωρία. Σιγά σιγά, όλο και λιγόστευαν, αφού κανένας γονιός δεν δίδαξε το παιδί του πώς να φτιάχνει αετό. Αν το είχε κάμει θα του είχε μάθει χωρίς καλά καλά να το καταλαβαίνει ο ίδιος και τις ιδιότητες του κανονικού εξαγώνου – θα φανεί παρακάτω του λόγου το ασφαλές. Ας έλθουμε στα ζύγια που πετάγματος ΚΑ, ΚΒ, ΚΟ και της ουράς ΛΕ, ΛΔ.

Σχεδόν πάντοτε όλα είχαν το ίδιο μήκος με την πλευρά (ακτίνα). Όμως, αν ήθελε κάποιος να παίρνει ύψος ο αετός του, κρατούσε το μεσιανό, το ΚΟ μικρότερο, όχι όσο αυτός ήθελε. Τα Μαθηματικά έχουν και πάλι το λόγο, όσο δηλ. το απόστημα ΟΘ του κανονικού εξαγώνου. Εφαρμόζοντας το Πυθαγόρειο Θεώρημα στο τρίγωνο ΟΓΘ θα βρείτε:

 ΟΘ=R320,86R

 

Και επειδή η πλευρά του κανονικού εξαγώνου είναι όσο και η ακτίνα, το μεσαίο ζύγι είναι τα 0,86 πλευράς. Κατ’ αυτό τον τρόπο, ο αετός υψωνόταν σχεδόν κατακόρυφα, ο σπάγγος του δεν έκανε «κοιλιά», που δεν ήταν τίποτα άλλο από την αλυσοειδή καμπύλη της Θεωρητικής Μηχανικής.


Περιέγραψα την κατασκευή για να είναι η σύγκριση ευχερής. Εμάς μας γέμιζε πριν απ’ όλα η προετοιμασία. Το πέταγμα ήταν η κορύφωση. Νοιώθαμε έρωτα γι’ αυτόν. Τον μαθαίναμε και τον χορταίναμε κατασκευάζοντάς τον. Και όταν τον βλέπαμε να σηκώνεται στα ύψη νοιώθαμε περισσότερο ελεύθεροι. Νικούσαμε την βαρύτητα της Γής που μας κρατά καθηλωμένους χιλιάδες χρόνια πάνω της. Λίκνο του ανθρώπινου γένους και του πολιτισμού του η γη, αλλά και τα δεσμά του. Σαν τον υψώναμε ψηλά και η καλούμπα είχε φτάσει στο τέλος, του στέλναμε και ένα «μήνυμα» του αετού ! Τι ήταν το μήνυμα; Ένα στρογγυλό χαρτί με μια τρύπα στη μέση, συνήθως από το πακέτο τσιγάρων των θεριακλήδων της παρέας, που το περνούσαμε στο σπάγγο και ο αέρας το προχωρούσε μέχρι τον αετό! Έτσι με το πέταγμα το αετού περνούσαμε τις ελεύθερες ώρες σχεδόν όλο το σαρανταήμερο. Όσο κρατούσε το ανοιξιάτικο βοριαδάκι και μας το επέτρεπε. Μετά τον κρεμούσαμε στο υπόγειο, εφόσον δεν είχε καρφωθεί σε κανένα δένδρο. Σύρματα της Δ.Ε.Η. δεν υπήρχαν για εμπόδια και ηλεκτροπληξίες. Έφτιαξα αετούς για τα παιδιά μου, τα ανίψια μου και τον εγγονό μου.
Θα πει κάποιος: Αφού δίδαξες τα παιδιά σου, συ κατασκευάζεις και για το εγγόνι;
-  Ε! λοιπόν, ναι. Τα παιδιά δεν τα είδα αποφασισμένα να γονατίσουν στο πάτωμα και ν’ ανακατευτούν με κόλλες, ψαλίδια και σπάγγους. Τα είδα να κατευθύνονται στο γειτονικό περίπτερο!! Εγώ πάντως κάτι κερδίζω. Γίνομαι πάλι παιδί. Μόνο δυο φορές στη ζωή μας γινόμαστε παιδιά. Όταν είμαστε πραγματικά παιδιά και όντας μεγάλοι, να μπορούμε να κατακτήσουμε πάλι όσα μας έκαναν εντύπωση ως παιδιά. Η παιδική μνήμη είναι παντοδύναμη. Παραμένουμε ζωντανοί χάρη στην αυταξία ορισμένων στιγμών, που επιλέγουμε, δημιουργώντας μια δεύτερη ροή παράλληλη με τις ρυτίδες μας. 

 

Πηγή: Λαμιακός Τύπος


Αλέκος Φασιανός (1935-2022) - "Χαρταετός"

 

🌐Ένα αναλυτικό tutorial για την κατασκευή χαρταετού, καθώς και τη Φυσική που χρησιμεύει για το πέταγμα του χαρταετού, θα βρείτε στο ιστολόγιο Πειράματα Φυσικής με Απλά Υλικά.

 

Τρίτη 25 Φεβρουαρίου 2025

Τριγωνικοί, τετραγωνικοί και εξαγωνικοί αριθμοί!

 

Στην αρχαιότητα, οι Πυθαγόρειοι θεωρούσαν πως τα πάντα στο σύμπαν μπορούσαν να εξηγηθούν με τη βοήθεια των αριθμών. Γι’ αυτό έφτιαχναν διάφορες ακολουθίες αριθμών με βάση γεωμετρικά σχήματα. Οι βασικότεροι είναι οι τριγωνικοί, οι τετραγωνικοί και οι εξαγωνικοί αριθμοί.

  

Τριγωνικός λέγεται κάθε αριθμός, ο οποίος, αν συμβολιστεί με σημεία –τόσα σημεία όσα υποδηλώνει ο αριθμός– σχηματίζεται τρίγωνο. Για να βρούμε τους τριγωνικούς αριθμούς, αρχίζουμε από το 1. Κάθε φορά προσθέτουμε και τον επόμενο φυσικό αριθμό. Δηλαδή:

1

1+2=3

1+2+3=6

1+2+3+4=10

1+2+3+4+5=15

1+2+3+4+5+6=21


Το άθροισμα που προκύπτει κάθε φορά (σημειωμένο με έντονο) είναι και ένας τριγωνικός αριθμός.

 

Μπορούμε να αναπαραστήσουμε τους τριγωνικούς αριθμούς με ισόπλευρα τρίγωνα, όπως φαίνεται στο παρακάτω σχήμα:

 

τριγωνικοί αριθμοί


Ο n-οστός τριγωνικός αριθμός είναι το άθροισμα των n πρώτων θετικών ακεραίων. Συμβολίζεται με \(T_n\) και ισούται με

\(T_n=1+2+…+n=\frac{n(n+1)}{2}\)

π.χ. \(T_4=\frac{4 \cdot 5)}{2}=10\)

 

Για την ακολουθία των τριγωνικών αριθμών ισχύει και ο αναδρομικός τύπος:

\(T_1=1\)

\(T_n=T_{n-1}+n, n>1\)



Τετραγωνικός αριθμός, ή αλλιώς τέλειο τετράγωνο, λέγεται ένας θετικός ακέραιος αριθμός που είναι το τετράγωνο ενός άλλου ακέραιου αριθμού, δηλαδή ισούται με το γινόμενο του αριθμού εκείνου με τον εαυτό του.

Ένας τετραγωνικός αριθμός n αντιπροσωπεύεται από n σημεία (κουκκίδες), τα οποία σχηματίζουν τετράγωνο, με την κάθε πλευρά του να έχει n σημεία.


τετραγωνικοί αριθμοί


Ο αριθμός n είναι τετραγωνικός, αν και μόνο αν μπορούμε να συνθέσουμε ένα τετράγωνο από n ίσα μεταξύ τους τετράγωνα.

π.χ. 

n=1=12


n=4=22


n=9=32


n=16=42


n=25=52



Οι πρώτοι τετραγωνικοί αριθμοί (τέλεια τετράγωνα) είναι:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...

 

Για έναν θετικό ακέραιο n, ο n-οστός τετραγωνικός αριθμός είναι ο n2.


Κάποιοι τύποι που χρησιμεύουν για τον υπολογισμό ενός τετραγωνικού αριθμού όταν είναι γνωστός ο προηγούμενός του (αναδρομικοί τύποι), είναι:

n2=(n1)2+(n1)+n=(n1)2+(2n1)


Το άθροισμα δύο διαδοχικών τριγωνικών αριθμών είναι τετραγωνικός αριθμός.

π.χ. T3+T4=6+10=16, που είναι τετραγωνικός αριθμός.



Εξαγωνικός αριθμός λέγεται ένας πολυγωνικός αριθμός που παριστάνεται με ένα εξάγωνο.


εξαγωνικοί αριθμοί

 

Ο n-οστός εξαγωνικός αριθμός \(h_n\) είναι το πλήθος των κουκκίδων που «δημιουργούν» το εξαγωνικό σχήμα του. Στο μοτίβο αυτό, τα εξάγωνα δεν περιέχονται το ένα στο εσωτερικό του άλλου, αλλά έχουν όλα μία κοινή «κορυφή».

 

Οι πρώτοι εξαγωνικοί αριθμοί είναι:

1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, …


Ο τύπος που δίνει τον n-οστό εξαγωνικό αριθμό είναι:

\(h_n=2n^2-n=n(2n-1)=\frac{2n(2n-1)}{2} \)

 

Κάθε εξαγωνικός αριθμός είναι και τριγωνικός αριθμός.

Κάθε τριγωνικός αριθμός με περιττό πλήθος «πλευρών» (δηλαδή ο \(T_n\) με n περιττό) είναι εξαγωνικός αριθμός.

Κάθε άρτιος τέλειος αριθμός είναι εξαγωνικός. Καθώς δεν είναι γνωστός κανένας τέλειος αριθμός που να είναι περιττός, όλοι οι γνωστοί τέλειοι αριθμοί είναι εξαγωνικοί.


Για να ελέγξουμε αν ένας θετικός ακέραιος \(x\) είναι εξαγωνικός, μπορούμε να υπολογίσουμε τον αριθμό

\(n=\frac{\sqrt{8x+1}+1}{4}\).

Αν ο \(n\) είναι ακέραιος, τότε ο \(x\) είναι ο n-οστός εξαγωνικός αριθμός. Αλλιώς ο \(x\) δεν είναι εξαγωνικός.



👉Ανακαλύψτε περισσότερα στην "Online Εγκυκλοπαίδεια Ακολουθιών Ακέραιων Αριθμών" (OEIS).


Σάββατο 22 Φεβρουαρίου 2025

Μαθηματικά στην τηλεόραση: "NUMB3RS"


📺Κι όμως! Τα μαθηματικά έχουν... τηλεθέαση.

🎬Μετά τη μεγάλη απήχηση που είχε η λίστα με τις καλύτερες ταινίες μαθηματικού περιεχομένου (η οποία συνεχίζει να εμπλουτίζεται), σκέφτηκα να κάνω κάτι αντίστοιχο και για τις τηλεοπτικές σειρές που περιέχουν μαθηματικά στην πλοκή τους. Για όσους, λοιπόν, αγαπούν τις τηλεοπτικές σειρές και δεν θα έλεγαν "όχι" σε λίγα ψυχαγωγικά μαθηματικά, σε αυτήν τη στήλη θα παρουσιάζουμε τις προτάσεις μας και θα ανταλλάζουμε απόψεις. 

🎥Τα "εγκαίνια" της λίστας θα γίνουν με τη σειρά "Numb3rs"...


Numb3rs


🎞️Πρώτη κυκλοφορία: 2005

📽️Σεζόν: 6

📜Υπόθεση:

Σε κάθε επεισόδιο, η σειρά παρουσιάζει δραματοποιημένες, πραγματικές υποθέσεις, στις οποίες αληθινές μαθηματικές ιδέες παίζουν κρίσιμο ρόλο. Ένας από τους δύο ήρωες, ο καθηγητής Τσάρλι Επς, είναι μαθηματικός. Μεγάλο μέρος της δράσης κινείται γύρω από τα μαθηματικά, καθώς ο Τσάρλι χρησιμοποιεί την επιστήμη και την τετράγωνη λογική του για να βοηθήσει τον μεγαλύτερο αδελφό του, Ντον, πράκτορα του FBI, στην ταυτοποίηση και στον εντοπισμό εγκληματιών.

Οι σεναριογράφοι της σειράς -καθηγητές μαθηματικών και επιστημονικοί σύμβουλοι της σειράς NUMB3RS- αναλύουν τις μαθηματικές ιδέες που χρησιμοποιούνται. Από την ιατροδικαστική μέχρι την αντιτρομοκρατία, από την Υπόθεση Ρίμαν μέχρι την ανασύνθεση εικόνας και την εξόρυξη δεδομένων, από τους κωδικούς στις πιστωτικές κάρτες μέχρι τη θεωρία παιγνίων και τις απάτες στο καζίνο, οι αριθμοί κυριαρχούν.

Τα μαθηματικά είναι κάτι παραπάνω από εξισώσεις και τύπους. Είναι η λογική, είναι η ικανότητα να σκεφτόμαστε, είναι η αξιοποίηση του μυαλού μας. Τα χρησιμοποιούμε για να αποκαλύψουμε μοτίβα, για να προβλέψουμε τη συμπεριφορά, για να αναλύσουμε το έγκλημα. Χρησιμοποιώντας τους αριθμούς, μπορούμε να λύσουμε τα μεγαλύτερα μυστήρια του κόσμου μας.

Κι αν εξακολουθείτε να αναρωτιέστε σε τι χρησιμεύουν τα μαθηματικά στη ζωή μας, η απάντηση είναι ότι... «Everything is NUMB3RS».



💬Γράψτε στα σχόλια, όσοι την έχετε δει, την κριτική σας. Ποιες άλλες σειρές έχετε να προτείνετε;


Δευτέρα 17 Φεβρουαρίου 2025

Τα Μαθηματικά στην Τέχνη: Η ταινία του Möbius

 

Αν είχαμε μια κενή σφαίρα με ένα μυρμήγκι στο εσωτερικό της, εύκολα θα αντιλαμβανόμασταν ότι η σφαίρα διαθέτει δύο διακεκριμένες όψεις. Ένα μυρμήγκι που περπατά στο εσωτερικό της σφαίρας δεν θα φτάσει ποτέ στην εξωτερική επιφάνεια. Επίσης, ένα μυρμήγκι που περπατά στο εξωτερικό της δεν πρόκειται να περάσει στο εσωτερικό.

Μια επίπεδη επιφάνεια που εκτείνεται ως το άπειρο προς όλες τις κατευθύνσεις διαθέτει, επίσης, δύο όψεις. Ένα μυρμήγκι που περπατά στη μία όψη δεν πρόκειται να βρεθεί ποτέ στην άλλη. Ακόμη και μια πεπερασμένη επίπεδη επιφάνεια, όπως μια σελίδα χαρτιού, θεωρείται δύο όψεων αν το μυρμήγκι δεν καταφέρει να "καβαλήσει" τις αιχμηρές ακμές του συνόρου της. Ομοίως, ένα κοίλο αντικείμενο τοροειδούς σχήματος σαν τον λουκουμά έχει δύο όψεις. 

Η πρώτη επιφάνεια μίας όψης που ανακαλύφθηκε και μελετήθηκε είναι η ταινία του Möbius.


Seth Bareiss (γεν. 1964) - "Forever Fish" (2005)


Τα βιβλία γράφουν... 

Η ταινία του Möbius είναι μια επιφάνεια με μία μόνο όψη και μόνο ένα σύνορο (συνοριακή γραμμή), ενώ δεν έχει προσανατολισμό.

M.C Escher (1898-1972) - "Möbius Strip I" (1961)
M.C Escher (1898-1972) - "Möbius Strip I" (1961)

M.C Escher (1898-1972) - "Möbius Strip II - Red Ants" (1963)


Για να κατασκευάσει κανείς μια ταινία Möbius, αρκεί απλώς να ενώσει τα δύο άκρα μιας μακριάς ανοιχτής λωρίδας, αφού πρώτα περιστρέψει το ένα από αυτά κατά 180º ως προς το άλλο. Σε μια τέτοια επιφάνεια, ένα μυρμήγκι μπορεί να περπατήσει από ένα σημείο σε ένα άλλο, χωρίς ποτέ να διασχίσει μια ακμή.


M.C Escher (1898-1972) - "Möbius Horsemen" (1946)

Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Möbius"
Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Möbius"

Joachim Eriksen (σύγχρονος καλλιτέχνης)
Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Intermediate Dimension"


Προσπαθήστε να χρωματίσετε μια ταινία Möbius. Είναι αδύνατο να βάψετε τη μια πλευρά κόκκινη και την άλλη πράσινη, καθώς διαθέτει μια μόνο όψη. Αυτό σημαίνει ότι αν πάρουμε δύο οποιαδήποτε σημεία πάνω στην ταινία του Möbius, μπορούμε να σχεδιάσουμε μια συνεχή γραμμή, χωρίς ποτέ να διασχίσουμε ένα σύνορο (ακμή).  

Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Möbius"
Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Über die Einfachheit der Dinge"


Η ταινία του Μέμπιους είναι μια μη προσανατολιζόμενη επιφάνεια. Παρατηρήστε ότι ο κάβουρας που κινείται πάνω σε αυτήν αντιστρέφεται (η μεγάλη του δαγκάνα από αριστερά πάει δεξιά) κάθε φορά που κάνει έναν πλήρη κύκλο. Αυτό δεν θα συνέβαινε αν ο κάβουρας κινούταν πάνω σε έναν τόρο.
Η ταινία του Μέμπιους είναι μια μη προσανατολιζόμενη επιφάνεια. Παρατηρήστε ότι ο κάβουρας που κινείται πάνω σε αυτήν αντιστρέφεται (η μεγάλη του δαγκάνα από αριστερά πάει δεξιά) κάθε φορά που κάνει έναν πλήρη κύκλο. Αυτό δεν θα συνέβαινε αν ο κάβουρας κινούταν πάνω σε έναν τόρο.


Η ταινία του Möbius με τις ενδιαφέρουσες ιδιότητές της έχει αποτελέσει -και συνεχίζει να αποτελεί- έμπνευση για πολλούς καλλιτέχνες...


"Möbius" - Γλυπτό των Jennifer Macklem & Kip Jones  που διακοσμεί το εξωτερικό της δημόσιας βιβλιοθήκης της Κελόουνα στον Καναδά.
"Möbius" - Γλυπτό των Jennifer Macklem & Kip Jones 
που διακοσμεί το εξωτερικό της δημόσιας βιβλιοθήκης της Κελόουνα στον Καναδά.


"Möbius Ship" (2006) - Γλυπτό του Tim Hawkinson που παριστάνει τον αέναο κύκλο της ταινίας του Möbius. (Μουσείο Τέχνης της Ινδιανάπολης)
"Möbius Ship" (2006) - Γλυπτό του Tim Hawkinson
που παριστάνει τον αέναο κύκλο της ταινίας του Möbius.
(Μουσείο Τέχνης της Ινδιανάπολης)


Joachim Eriksen (σύγχρονος καλλιτέχνης)
Joachim Eriksen (σύγχρονος καλλιτέχνης) - "Simplicity (Möbius band)", γλυπτό από αλάβαστρο



Η ανακάλυψή της αποδίδεται στους Γερμανούς μαθηματικούς August Ferdinand Möbius και Johann Benedict Listing το 19ο αιώνα, αν και μια δομή παρόμοια με την ταινία του Möbius φαίνεται στα ρωμαϊκά μωσαϊκά που χρονολογούνται γύρω στο 200-250 μ.Χ.  


Αρχαίο Ρωμαϊκό μωσαϊκό που απεικονίζει μια δομή παρόμοια με την ταινία του Μέμπιους
Αρχαίο ρωμαϊκό μωσαϊκό, όπου απεικονίζεται μια δομή παρόμοια με την ταινία του Möbius  


Πηγές:

Παρασκευή 14 Φεβρουαρίου 2025

"Έρωτας και μαθηματικά"

 

"Έρωτας και μαθηματικά" - βιβλίο εκδόσεις Αλεξάνδρεια


«Σκεφτείτε να υποχρεωνόσασταν στο σχολείο να παρακολουθήσετε ένα μάθημα καλλιτεχνικών στο οποίο θα σας δίδασκαν μόνο πώς να βάψετε ένα φράχτη. Σκεφτείτε να μη σας έδειχναν ποτέ τους πίνακες του Λεονάρντο Ντα Βίντσι ή του Πικάσο. Θα σας βοηθούσε αυτό το μάθημα να εκτιμήσετε την τέχνη; Θα σας έκανε να θελήσετε να μάθετε περισσότερα;», αναρωτιέται ο κορυφαίος μαθηματικός και συγγραφέας Edward Frenkel στον πρόλογο του βιβλίου του, Έρωτας & Μαθηματικά, (Εκδ. Αλεξάνδρεια - Μετάφραση: Τεύκρος Μιχαηλίδης). Και διαπιστώνει: «Έτσι διδάσκονται τα μαθηματικά στο σχολείο, οπότε στα μάτια των περισσοτέρων από εμάς ισοδυναμούν με το να κάθεσαι και να παρακολουθείς τη μπογιά να στεγνώνει».

Δεν πρόκειται, όμως, για ένα βιβλίο που επιχειρεί, απλώς, να αποκαλύψει την κρυμμένη ομορφιά και το εύρος των μαθηματικών και να στηλιτεύσει τον συμβατικό τρόπο διδασκαλίας τους. Αλλά για ένα σύνθετο, συναρπαστικό ανάγνωσμα στο οποίο ο έρωτας του Frenkel για τα μαθηματικά - καθηγητής σήμερα στο Πανεπιστήμιο της Καλιφόρνιας στο Μπέρκλεϊ - συνυπάρχει με τις δυσκολίες που αντιμετώπισε στην προσπάθειά του να κατακτήσει τη γνώση, και με το πρόσφατο, φωτεινό εγχείρημά του. Αυτό τον καιρό εργάζεται σε ένα από τα σπουδαιότερα επιτεύγματα των τελευταίων πενήντα χρόνων: το Πρόγραμμα Λάνγκλαντς, μια μεγάλη Ενοποιημένη Θεωρία των Μαθηματικών.