Παρασκευή 25 Οκτωβρίου 2024

Ποιος είναι ο μεγαλύτερος γνωστός πρώτος αριθμός;


numbers
Πηγή εικόνας: iStock

 

Υπάρχουν άπειροι σε πλήθος πρώτοι αριθμοί, αλλά ο μεγαλύτερος που ξέρουμε μέχρι σήμερα έχει το "ψευδώνυμο" Μ136279841 και ισούται με \(2^{136.279.841}-1\). Έχοντας 41.024.320 ψηφία, πλέον κατέχει το ρεκόρ του μεγαλύτερου γνωστού πρώτου αριθμού. Έχει πάνω από 16 εκατομμύρια ψηφία περισσότερα από τον "προκάτοχό" του, τον αριθμό Μ82589933. Να σημειωθεί ότι δεν είναι γνωστό αν μεταξύ των δύο αυτών πρώτων αριθμών δεν υπάρχει και άλλος πρώτος. Και οι δύο αυτοί πρώτοι αριθμοί είναι αριθμοί Mersenne, μια ειδική κατηγορία πρώτων αριθμών που ονομάστηκαν έτσι από τον Γάλλο μοναχό Marin Mersenne και για τους οποίους θα μιλήσουμε αναλυτικά σε μελλοντική ανάρτηση.

Ο νέος μεγαλύτερος πρώτος αριθμός ανακαλύφθηκε πρόσφατα από έναν ερασιτέχνη ερευνητή, ονόματι Luke Durant, ο οποίος χρησιμοποίησε ελεύθερο λογισμικό σε ένα δίκτυο υπολογιστών σε 17 χώρες. Μάλιστα, ο Durant δήλωσε πως η Τεχνητή Νοημοσύνη δεν πρόκειται να ανακαλύψει τον επόμενο πρώτο αριθμό...


Πηγή: LiveScience | Which is the largest known prime number? 24/10/2024


Πέμπτη 24 Οκτωβρίου 2024

Γρίφος: Ρώσικη ρουλέτα


russian roulette


Σας έχουν απαγάγει, είστε δεμένοι σε μια καρέκλα και ο απαγωγέας σας αναγκάζει να παίξετε ρώσικη ρουλέτα. Παίρνει ένα περίστροφο, ανοίγει τον κύλινδρο και σας δείχνει τις έξι άδειες θαλάμες του κυλίνδρου του πιστολιού. Βάζει δύο σφαίρες σε δύο θαλάμες στο περίστροφο. Κλείνει το όπλο και περιστρέφει τον κύλινδρο. Σας βάζει το όπλο στο κεφάλι και πατάει τη σκανδάλη. Ακούτε μόνο το κλικ και καταλαβαίνετε ότι σταθήκατε πολύ τυχερός. "Θα πυροβολήσω ξανά", λέει, "θα ήθελες να τραβήξω τη σκανδάλη τώρα, ή προτιμάς να γυρίσω πρώτα τον κύλινδρο του περιστρόφου";

Ποια είναι η καλύτερη επιλογή επιβίωσης: 

1. αν ξέρετε ότι οι σφαίρες βρίσκονταν σε διαδοχικές θαλάμες;

2. αν ξέρετε ότι οι σφαίρες δεν βρίσκονταν σε διαδοχικές θαλάμες;



📚Πηγή γρίφου: Θανάσης Δρούγας: "Πώς να επιβιώνετε σε ερημονήσια και... άλλοι μαθηματικοί γρίφοι". Bookstars, 2024.


Τρίτη 22 Οκτωβρίου 2024

Σειρές και σύγκλιση... Μια... οπτική απόδειξη


Στα μαθηματικά, όταν λέμε πως μια σειρά συγκλίνει, αυτό με πολύ απλά λόγια σημαίνει ότι αν προσθέτουμε άπειρους αριθμούς (οι οποίοι λέγονται οι όροι της σειράς), το αποτέλεσμα "βγαίνει" πραγματικός αριθμός. Αν το αποτέλεσμα "βγαίνει" άπειρο, τότε λέμε ότι η σειρά αποκλίνει.


Για παράδειγμα, θέλουμε να υπολογίσουμε το "άπειρο άθροισμα" (δηλαδή τη σειρά) \( \frac{1}{2} \cdot \sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \frac{4}{32} + \frac{5}{64} + ...\).


 Εδώ δεν θα δούμε κανέναν υπολογισμό, αλλά μια όμορφη... οπτική "απόδειξη":

convergent series
Πηγή εικόνας: Facebook | Math is visual 


Τρίτη 15 Οκτωβρίου 2024

Πόσες φορές μπορεί να διπλωθεί ένα χαρτί;


Πόσες φορές μπορεί να διπλωθεί ένα χαρτί;
Το origami είναι η τέχνη του διπλώματος χαρτιού, αλλά μέχρι πόσες φορές μπορείς να διπλώσεις ένα χαρτί στη μέση;
(Image credit: Aliaksandr Barysenka / EyeEm via Getty Images)


Μια κόλλα χαρτί, σαν τις φωτοτυπίες που δίνω στους μαθητές μου, μπορεί να διπλωθεί στη μέση οριακά μέχρι και 7 φορές. Μπορείτε να το διαπιστώσετε εύκολα και μόνοι σας, διπλώνοντας μια κόλλα Α4. Είναι αδύνατο να διπλωθεί το χαρτί πάνω από 7 φορές! Αυτό οφείλεται στο γεγονός ότι με κάθε δίπλωση, το πάχος του χαρτιού διπλασιάζεται. Αυτού του είδους η αύξηση που γίνεται  στο πάχος του χαρτιού λέγεται εκθετική αύξηση.

Πόσες φορές πιστεύετε ότι θα χρειαστεί να διπλώσετε ένα τέτοιο χαρτί (οσοδήποτε μεγάλο) ώστε το χαρτί αυτό διπλωμένο να έχει πάχος όσο η απόσταση της Γης από τη Σελήνη;



Πόσες φορές μπορεί να διπλωθεί ένα χαρτί ώστε το χαρτί αυτό διπλωμένο να έχει πάχος όσο η απόσταση της Γης από τη Σελήνη;;


Η απάντηση είναι παράδοξη και αντιβαίνει στη λογική μας: είναι μόλις... 39 φορές! Αλλά οι αριθμοί λένε την αλήθεια. 

Σκεφτείτε ότι αν μπορούσατε να διπλώσετε ένα χαρτί πάχους 0,8 χιλιοστών 17 φορές, το χαρτί αυτό διπλωμένο θα είχε πάχος \(0,0008 \cdot 2^{17}=104,9\) μέτρα, δηλαδή θα έφτανε το ύψος ενός ουρανοξύστη. 

Με 20 αναδιπλώσεις έχουμε πάχος 838,86 μέτρα.

Με 30 αναδιπλώσεις έχουμε πάχος σχεδόν 100 χιλιόμετρα και φτάνουμε στη θερμόσφαιρα.

Με 39 αναδιπλώσεις έχουμε πάχος περίπου 439.804, ξεπερνώντας τη Σελήνη.

Με 48 αναδιπλώσεις, θεωρητικά πάντα, φτάνουμε στον Ήλιο! 

Αν είμαστε αρκετά εργατικοί και... μερακλήδες και διπλώσουμε το χαρτί 85 φορές, έχουμε φτάσει στο γαλαξία της Ανδρομέδας, που απέχει από τη Γη περίπου 2,5 εκατομμύρια έτη φωτός!



Δείτε στο παρακάτω βίντεο από το κανάλι TED-Ed, ότι διπλώνοντας ένα ιδιαίτερα λεπτό χαρτί, πάχους 0,01 χιλιοστών 40 φορές, φτάνουμε έναν δορυφόρο GPS. Αν το διπλώσουμε 45 φορές φτάνουμε στη Σελήνη, ενώ αν το διπλώσουμε άλλη μία φορά, επιστρέφουμε πίσω στη Γη...



Ας είμαστε, όμως, ρεαλιστές. Δεν έχουμε τόσο πολύ χαρτί για να διπλώσουμε. Το 2002, λοιπόν, μια μαθήτρια Λυκείου από την Καλιφόρνια, η Britney Gallivan, θέλησε να διπλώσει ένα χαρτί πάνω από 7 φορές, καταρρίπτοντας το "μύθο". Το κατάφερε, διπλώνοντας χαρτί υγείας μήκους 1.200 μέτρων 12 φορές, πάντα προς την ίδια κατεύθυνση, κατακτώντας έτσι το ρεκόρ Guinness. Μάλιστα υπολόγισε τις διαστάσεις που πρέπει να έχει αρχικά το χαρτί, ώστε να μπορεί να διπλωθεί \(n\) φορές. Σύμφωνα με την Gallivan, είναι: 

όπου t το πάχος του χαρτιού, n το πλήθος των διπλώσεων, L το μήκος του χαρτιού και W το πλάτος του.



Το 2005, με το συγκεκριμένο ζήτημα ασχολήθηκε και η γνωστή εκπομπή Mythbusters, διπλώνοντας χαρτί επιφάνειας όσο ένα γήπεδο ποδοσφαίρου 11 φορές!




Το 2011, μια ομάδα μαθητών στο Southborough της Μασαχουσέτης, υπό την επίβλεψη του καθηγητή τους, Mark Tanton, δίπλωσαν χαρτί υγείας σχεδόν 4 χιλιομέτρων 13 φορές, σε έναν τεράστιο διάδρομο 250 μέτρων στο MIT. Στο διάδρομο αυτό, αφού δεν είχαν προβλήματα με ανέμους, τα κατάφεραν μετά από 4 περίπου ώρες. Αν και κατέρριψαν το προηγούμενο ρεκόρ, δεν έχουν καταγραφεί στο βιβλίο Guinness. Φαίνεται πως δεν ενθαρρύνεται η προσπάθεια κατάρριψης ρεκόρ διπλώματος χαρτιού για οικολογικούς λόγους!


Δευτέρα 14 Οκτωβρίου 2024

"Γυναίκες μαθηματικοί στο περιθώριο της ιστορίας"


Δημήτρης Χασάπης Γυναίκες μαθηματικοί στο περιθώριο της ιστορίας

Πορτρέτα τριάντα πέντε πρωτοπόρων γυναικών μαθηματικών, οι οποίες σε διάφορες ιστορικές περιόδους, χώρες και πολιτισμούς, υπερβαίνοντας εμπόδια και προκαταλήψεις, συνέβαλαν καθοριστικά στην εξέλιξη της επιστήμης. Για τις γυναίκες αυτές, όμως, η Ιστορία και οι ιστορίες των μαθηματικών δεν έχουν αφιερώσει παρά μόνο σύντομα σχόλια ή ελάχιστες αναφορές στο περιθώριό τους ή τις έχουν εντελώς αγνοήσει.

Λέγεται συχνά ότι η Ιστορία γράφεται από τους νικητές, αλλά η ιστορία των μαθηματικών γράφτηκε από τους άνδρες, τους νικητές στον άδικο πόλεμο των μύθων και των προκαταλήψεων σε βάρος διαπρεπών γυναικών μαθηματικών. Μια αδικία που το βιβλίο αυτό επιδιώκει να αποκαταστήσει.


Γυναίκες μαθηματικοί στο περιθώριο της ιστορίας
Η παρουσίαση του βιβλίου του Δημήτρη Χασάπη, "Γυναίκες μαθηματικοί στο περιθώριο της ιστορίας" θα γίνει την Πέμπτη 17 Οκτωβρίου 2024 και ώρα 7.30μμ στο IANOS café, Σταδίου 24, Αθήνα. 


Δημήτρης Χασάπης Γυναίκες μαθηματικοί στο περιθώριο της ιστορίας


Πέμπτη 10 Οκτωβρίου 2024

Γρίφος: Οι δύο κλεψύδρες


Γρίφος_Οι δύο κλεψύδρες

Έχουμε δύο κλεψύδρες άμμου, μία που μετράει ακριβώς 4 λεπτά και μία που μετράει ακριβώς 7 λεπτά. Θέλουμε να μετρήσουμε ακριβώς 2 λεπτά, για να βράσουμε ένα αβγό. Χρησιμοποιώντας μόνο αυτές τις δύο κλεψύδρες, πώς θα μετρήσουμε 2 λεπτά ακριβώς;


Κυριακή 6 Οκτωβρίου 2024

Πρώτοι και σύνθετοι αριθμοί: Το κόσκινο του Ερατοσθένη και μια απόδειξη του Ευκλείδη

 

πρώτοι αριθμοί


Πρώτος καλείται ένας φυσικός αριθμός που διαιρείται μόνο με το 1 και τον εαυτό του. Για παράδειγμα οι αριθμοί 2, 3, 11, 17 είναι πρώτοι. Ένας αριθμός που δεν είναι πρώτος καλείται σύνθετος. Για παράδειγμα, ο αριθμός 9 είναι σύνθετος, αφού εκτός της μονάδας και του εαυτού του έχει διαιρέτη και το 3.

Επειδή το 1 έχει μόνο έναν διαιρέτη (το 1, που είναι και ο εαυτός του), δεν είναι ούτε πρώτος ούτε σύνθετος αριθμός. Το 2 είναι ο μοναδικός άρτιος πρώτος, ενώ όλοι οι υπόλοιποι πρώτοι αριθμοί είναι περιττοί.

Μπορούμε να βρούμε όλους τους πρώτους αριθμούς με ένα «κόσκινο»: Το κόσκινο του Ερατοσθένη κρατάει όλους τους σύνθετους αριθμούς και αφήνει να περάσουν όλοι οι πρώτοι.


Πρώτος καλείται ένας φυσικός αριθμός που διαιρείται μόνο με το 1 και τον εαυτό του. Για παράδειγμα οι αριθμοί 2, 3, 11, 17 είναι πρώτοι. Ένας αριθμός που δεν είναι πρώτος καλείται σύνθετος. Για παράδειγμα, ο αριθμός 9 είναι σύνθετος, αφού εκτός της μονάδας και του εαυτού του έχει διαιρέτη και το 3. Επειδή το 1 έχει μόνο έναν διαιρέτη (το 1, που είναι και ο εαυτός του), δεν είναι ούτε πρώτος ούτε σύνθετος αριθμός. Το 2 είναι ο μοναδικός άρτιος πρώτος, ενώ όλοι οι υπόλοιποι πρώτοι αριθμοί είναι περιττοί. Μπορούμε να βρούμε όλους τους πρώτους αριθμούς με ένα «κόσκινο»: Το κόσκινο του Ερατοσθένη κρατάει όλους τους σύνθετους αριθμούς και αφήνει να περάσουν όλοι οι πρώτοι. Για να βρούμε τους πρώτους αριθμούς, εργαζόμαστε ως εξής: 1. Αφήνουμε απέξω το 1 (είπαμε: δεν είναι ούτε πρώτος, ούτε σύνθετος).  2. Παίρνουμε τον επόμενο αριθμό (το 2). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του. 3. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 3). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν έχουν σβηστεί από πριν, ως πολλαπλάσια του 2). 4. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 5). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα έχουν σβηστεί από πριν). 5. Παίρνουμε τον επόμενο αριθμό που έμεινε (το 7). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν είναι σβησμένα από πριν). Με τον ίδιο τρόπο συνεχίζουμε για πάντα (αφού οι αριθμοί δεν τελειώνουν ποτέ)!    Αν όμως θέλουμε να βρούμε τους πρώτους αριθμούς μέχρι το 120 (όπως κάνουμε τώρα), δεν χρειάζεται να προχωρήσουμε παραπάνω από το 7, αφού...  ...οι αριθμοί που έχουν μείνει, (αυτοί που είναι μέσα στα κυκλάκια) είναι οι πρώτοι αριθμοί.  Οι πρώτοι αριθμοί μέχρι το 120 δίνονται παρακάτω: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113. Γεννάται λοιπόν το ερώτημα: Πόσοι είναι οι πρώτοι αριθμοί; Την απάντηση έδωσε ο Ευκλείδης στα Στοιχεία (πρόταση ΙΧ.20) που αποδεικνύει ότι το πλήθος τους είναι άπειρο. Η απόδειξη παραφράζεται εδώ και είναι η εξής: Εξετάστε οποιαδήποτε πεπερασμένη λίστα πρώτων αριθμών \(p_1, p_2 , ..., p_n\). Θα αποδειχθεί, ότι υπάρχει τουλάχιστον ένας πρόσθετος πρώτος αριθμός, που δεν υπάρχει στη λίστα. Έστω \(P\) το γινόμενο όλων των πρώτων αριθμών στη λίστα, δηλ.  \[P =p_1 \cdot p_2 \cdot  ... \cdot  p_n\].   Ας είναι \(q = P + 1\). Τότε ο \(q\) είναι είτε πρώτος ή όχι: •	Εάν ο \(q\) είναι πρώτος, τότε υπάρχει τουλάχιστον ένας ακόμη πρώτος, που δεν περιλαμβάνεται στη λίστα. •	Εάν ο \(q\) δεν είναι πρώτος, τότε κάποιος πρώτος παράγοντας \(p\) διαιρεί τον \(q\). Εάν αυτός ο παράγοντας \(p\) ήταν στη λίστα μας, τότε θα διαιρούσε το \(P\) (αφού το \(P\) είναι το γινόμενο κάθε αριθμού στη λίστα). Αλλά ο \(p\) διαιρεί επίσης το \(P + 1 = q\), όπως μόλις αναφέρθηκε. Εάν ο \(p\) διαιρεί το P και το q, τότε το p πρέπει επίσης να διαιρεί τη διαφορά των δύο αριθμών, που είναι \( (P + 1) - P = 1\). Δεδομένου ότι κανένας πρώτος αριθμός δεν διαιρεί το \(1\), ο \(p\) δεν μπορεί να είναι στη λίστα. Αυτό σημαίνει, ότι υπάρχει τουλάχιστον ένας ακόμη πρώτος αριθμός πέραν εκείνων της λίστας. Αυτό αποδεικνύει, ότι για κάθε πεπερασμένη λίστα πρώτων αριθμών, υπάρχει ένας πρώτος αριθμός, που δεν βρίσκεται στη λίστα. Άρα οι πρώτοι αριθμοί είναι άπειροι στο πλήθος. Η απόδειξη αυτή του Ευκλείδη θεωρείται από τις κομψότερες αποδείξεις στην ιστορία των μαθηματικών.
Το κόσκινο του Ερατοσθένη: Από το βιβλίο Μαθηματικών της Α΄ Γυμνασίου, εκδόσεις Διόφαντος, 2023

Για να βρούμε τους πρώτους αριθμούς, εργαζόμαστε ως εξής:

1. Αφήνουμε απέξω το 1 (είπαμε: δεν είναι ούτε πρώτος, ούτε σύνθετος).

2. Παίρνουμε τον επόμενο αριθμό (το 2). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του.

3. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 3).
Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν έχουν σβηστεί από πριν, ως πολλαπλάσια του 2).

4. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 5).
Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα έχουν σβηστεί από πριν).

5. Παίρνουμε τον επόμενο αριθμό που έμεινε (το 7).
Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν είναι σβησμένα από πριν).

Με τον ίδιο τρόπο συνεχίζουμε για πάντα (αφού οι αριθμοί δεν τελειώνουν ποτέ)!

 

Πρώτος καλείται ένας φυσικός αριθμός που διαιρείται μόνο με το 1 και τον εαυτό του. Για παράδειγμα οι αριθμοί 2, 3, 11, 17 είναι πρώτοι. Ένας αριθμός που δεν είναι πρώτος καλείται σύνθετος. Για παράδειγμα, ο αριθμός 9 είναι σύνθετος, αφού εκτός της μονάδας και του εαυτού του έχει διαιρέτη και το 3. Επειδή το 1 έχει μόνο έναν διαιρέτη (το 1, που είναι και ο εαυτός του), δεν είναι ούτε πρώτος ούτε σύνθετος αριθμός. Το 2 είναι ο μοναδικός άρτιος πρώτος, ενώ όλοι οι υπόλοιποι πρώτοι αριθμοί είναι περιττοί. Μπορούμε να βρούμε όλους τους πρώτους αριθμούς με ένα «κόσκινο»: Το κόσκινο του Ερατοσθένη κρατάει όλους τους σύνθετους αριθμούς και αφήνει να περάσουν όλοι οι πρώτοι. Για να βρούμε τους πρώτους αριθμούς, εργαζόμαστε ως εξής: 1. Αφήνουμε απέξω το 1 (είπαμε: δεν είναι ούτε πρώτος, ούτε σύνθετος).  2. Παίρνουμε τον επόμενο αριθμό (το 2). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του. 3. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 3). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν έχουν σβηστεί από πριν, ως πολλαπλάσια του 2). 4. Παίρνουμε τον επόμενο άσβηστο αριθμό (το 5). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα έχουν σβηστεί από πριν). 5. Παίρνουμε τον επόμενο αριθμό που έμεινε (το 7). Τον κρατάμε και σβήνουμε όλα τα πολλαπλάσιά του (όσα δεν είναι σβησμένα από πριν). Με τον ίδιο τρόπο συνεχίζουμε για πάντα (αφού οι αριθμοί δεν τελειώνουν ποτέ)!    Αν όμως θέλουμε να βρούμε τους πρώτους αριθμούς μέχρι το 120 (όπως κάνουμε τώρα), δεν χρειάζεται να προχωρήσουμε παραπάνω από το 7, αφού...  ...οι αριθμοί που έχουν μείνει, (αυτοί που είναι μέσα στα κυκλάκια) είναι οι πρώτοι αριθμοί.  Οι πρώτοι αριθμοί μέχρι το 120 δίνονται παρακάτω: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113.



Αν όμως θέλουμε να βρούμε τους πρώτους αριθμούς μέχρι το 120 (όπως κάνουμε τώρα), δεν χρειάζεται να προχωρήσουμε παραπάνω από το 7, αφού...

...οι αριθμοί που έχουν μείνει, (αυτοί που είναι μέσα στα κυκλάκια) είναι οι πρώτοι αριθμοί.

 

Οι πρώτοι αριθμοί μέχρι το 120 δίνονται παρακάτω:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113.


Γεννάται λοιπόν το ερώτημα: Πόσοι είναι οι πρώτοι αριθμοί; Την απάντηση έδωσε ο Ευκλείδης στα "Στοιχεία" του (Πρόταση ΙΧ.20) αποδεικνύοντας ότι το πλήθος τους είναι άπειρο. Η απόδειξη παραφράζεται εδώ και είναι η εξής:

Εξετάστε οποιαδήποτε πεπερασμένη λίστα πρώτων αριθμών p1, p2 , ... , pn. Θα αποδειχθεί, ότι υπάρχει τουλάχιστον ένας πρόσθετος πρώτος αριθμός, που δεν υπάρχει στη λίστα. Έστω P το γινόμενο όλων των πρώτων αριθμών στη λίστα, δηλ. 

P =p1 · p2 ·  ... ·  pn 

 Ας είναι q = P + 1. Τότε ο q είναι είτε πρώτος ή όχι:

  • Εάν ο q είναι πρώτος, τότε υπάρχει τουλάχιστον ένας ακόμη πρώτος, που δεν περιλαμβάνεται στη λίστα.
  • Εάν ο q δεν είναι πρώτος, τότε κάποιος πρώτος παράγοντας p διαιρεί τον q. Εάν αυτός ο παράγοντας p ήταν στη λίστα μας, τότε θα διαιρούσε το P (αφού το P είναι το γινόμενο κάθε αριθμού στη λίστα). Αλλά ο p διαιρεί επίσης το P + 1 = q, όπως μόλις αναφέρθηκε. Εάν ο p διαιρεί το P και το q, τότε το p πρέπει επίσης να διαιρεί τη διαφορά των δύο αριθμών, που είναι  (P + 1) - P = 1. Δεδομένου ότι κανένας πρώτος αριθμός δεν διαιρεί το 1, ο p δεν μπορεί να είναι στη λίστα. Αυτό σημαίνει, ότι υπάρχει τουλάχιστον ένας ακόμη πρώτος αριθμός πέραν εκείνων της λίστας.

Αυτό αποδεικνύει ότι για κάθε πεπερασμένη λίστα πρώτων αριθμών, υπάρχει ένας πρώτος αριθμός, που δεν βρίσκεται στη λίστα. Άρα οι πρώτοι αριθμοί είναι άπειροι σε πλήθος.

Η απόδειξη αυτή του Ευκλείδη θεωρείται από τις κομψότερες αποδείξεις στην ιστορία των μαθηματικών.

 

Στοιχεία
Ένα κομμάτι παπύρου των Στοιχείων του Ευκλείδη, που χρονολογείται περίπου στο 75-125 μ.Χ.



Πηγές: 

Σημειώσεις Θεωρίας Αριθμών, Α. Θωμά, Πανεπιστήμιο Ιωαννίνων

Wikipedia.org


Τετάρτη 2 Οκτωβρίου 2024

"Τα αστέρια της Βερενίκης"


Τα αστέρια της Βερενίκης


Αλεξάνδρεια, εποχή των Πτολεμαίων, 3ος αιώνας π.Χ. Μια Αίγυπτος ισχυρή, κυρίαρχη, κοιτίδα του πολιτισμού. Μια βασίλισσα που θυσιάζει τις χρυσές πλεξούδες της στη θεά Ίσιδα προκειμένου να γυρίσει ο άντρας της ζωντανός από την εκστρατεία. Ένας μονάρχης, στο απόγειο της δύναμής του, που αναζητά τη γνώση στα βιβλία. Κι ένας μαθηματικός, πνεύμα ανήσυχο, πανεπιστήμονας και παιδαγωγός, που αναρωτιέται πόσο μεγάλη είναι η Γη.


Με φόντο τις συνωμοσίες αλλά και τους έρωτες της Αυλής των Πτολεμαίων, και με αφορμή το χρονικό της πρώτης μέτρησης της Γης από τον Ερατοσθένη, ο Ντενί Γκετζ μάς δίνει ένα ιδιοφυές μυθιστόρημα που καθρεφτίζει την αστείρευτη ανάγκη του ανθρώπου για γνώση.


Δευτέρα 30 Σεπτεμβρίου 2024

Γιατί ο περιοδικός δεκαδικός 0,999... ισούται με 1;


Στην ταινία γερμανικής παραγωγής "Στο γραφείο των καθηγητών" (Das Lehrerzimmer, 2023), η δασκάλα θέτει το εξής πρόβλημα στους δωδεκάχρονους μαθητές της:


Das Lehrerzimmer, 2023

Ο περιοδικός δεκαδικός αριθμός \(0,\bar{9}=0,999...\) (άπειρα εννιάρια) ισούται ή όχι με το \(1\);


Οι περισσότεροι μαθητές πιστεύουν ότι υπάρχει αριθμός μεταξύ του 0,999... και του 1. Μετά από συζήτηση, ο Όσκαρ γράφει στον πίνακα την εξής απάντηση:


Das Lehrerzimmer, 2023

Γνωρίζω ότι

\[ \frac{1}{9} = 1:9 = 0,111... \]

Έτσι,

\[0,\bar{1}=\frac{1}{9}\]

Πολλαπλασιάζοντας και τα δύο μέλη της ισότητας με 9, παίρνουμε:

\[ 0,\bar{9}=9 \cdot \frac{1}{9}\]

άρα

\[ 0,\bar{9}=1\]


Das Lehrerzimmer, 2023



Η εξήγηση βασίζεται στο ότι τα εννιάρια στον περιοδικό δεκαδικό 0,999... είναι άπειρα. Δείτε παρακάτω τη μαθηματική απόδειξη.


Θέτουμε \( x=0,999... (1) \)

Πολλαπλασιάζουμε τα δύο μέλη της ισότητας με 10, οπότε \( 10x=9,999... (2) \)

Αφαιρούμε κατά μέλη τις ισότητες, \( (2)-(1) \) και έχουμε 

\( 10x - x = 9,999... - 0,999... \Leftrightarrow \)

\( 9x = 9 \Leftrightarrow \)

\( x = 1 \)

Άρα \( 0,999...  = 1 \).

 

Πέμπτη 26 Σεπτεμβρίου 2024

Τα κρυμμένα μαθηματικά στην "Έναστρη Νύχτα" του van Gogh

 

Η «Έναστρη Νύχτα» του Vincent van Gogh είναι μια ελαιογραφία σε καμβά η οποία απεικονίζει μια θέα λίγο πριν την ανατολή του ηλίου από το ανατολικό παράθυρο του δωματίου του ασύλου όπου διέμενε ο καλλιτέχνης στο Saint-Rémy-de-Provence στη νότια Γαλλία. Ο βαν Γκογκ είχε  αυτοβούλως ζητήσει τον εγκλεισμό του στο άσυλο μετά τον αυτο-ακρωτηριασμό του αριστερού του αυτιού, τον Δεκέμβριο του 1888.


Τα κρυμμένα μαθηματικά στην "Έναστρη Νύχτα" του van Gogh
Εκτιθέμενη από το 1941 στο Μουσείο Μοντέρνας Τέχνης της Νέας Υόρκης, η «Έναστρη Νύχτα» είναι ένα εξαιρετικά δημοφιλές έργο τέχνης.


 

Το αστραφτερό φως των αστεριών και τα στροβιλιζόμενα σύννεφα στον πίνακα αυτό, πιστευόταν παλιότερα ότι αντανακλούν την ταραχώδη ψυχική κατάσταση του καλλιτέχνη όταν ζωγράφιζε το έργο την άνοιξη του 1889. Πλέον, μελέτες από φυσικούς επιστήμονες έχουν δείξει ότι ο καλλιτέχνης είχε μια βαθιά, διαισθητική κατανόηση της μαθηματικής δομής της τυρβώδους ροής.

 

Τι είναι η τυρβώδης ροή;

Η τυρβώδης ροή είναι ένα συγκεκριμένο είδος ροής των ρευστών που μέσα της σχηματίζονται στρόβιλοι. Ως συνηθισμένο φυσικό φαινόμενο που παρατηρείται στα ρευστά –κινούμενο νερό, ωκεάνια ρεύματα, ροή αίματος, ατμοσφαιρικό οριακό στρώμα, διογκούμενα σύννεφα καταιγίδας,  νέφη καπνού και καπνός από τσιγάρο– η τυρβώδης ροή είναι χαοτική, καθώς σχηματίζονται μικρότεροι στρόβιλοι μέσα σε μεγαλύτερους. Είναι κάτι που αποτελεί καθημερινή μας εμπειρία και πρόκληση αξεπέραστη για τους μαθηματικούς φυσικούς.


Μπορεί να φαίνεται τυχαίο στον περιστασιακό παρατηρητή, ωστόσο οι «αναταράξεις» ακολουθούν ένα διαδοχικό μοτίβο που μπορεί να μελετηθεί και, τουλάχιστον εν μέρει, να εξηγηθεί χρησιμοποιώντας μαθηματικές εξισώσεις.

Μπορεί να φαίνεται τυχαίο στον περιστασιακό παρατηρητή, ωστόσο οι «αναταράξεις» ακολουθούν ένα διαδοχικό μοτίβο που μπορεί να μελετηθεί και, τουλάχιστον εν μέρει, να εξηγηθεί χρησιμοποιώντας μαθηματικές εξισώσεις.



Τα αστέρια του πίνακα, ο πλανήτης Αφροδίτη και το άστρο V838 Mon

«Μέσα από το παράθυρο με τα σιδερένια κάγκελα» γράφει ο Βαν Γκογκ στον αδελφό του Τεό, τον Μάιο του 1889, «μπορώ να διακρίνω ένα τετράγωνο κομμάτι γης με σιτάρι… πάνω από το οποίο, το πρωί, βλέπω τον ήλιο να ανατέλλει σε όλο του το μεγαλείο».

H «Έναστρη Νύχτα» είναι το μόνο νυχτερινό έργο στη σειρά πινάκων με τη θέα από το παράθυρο του υπνοδωματίου του. Στις αρχές Ιουνίου, έγραψε στον Τεό: «Σήμερα το πρωί είδα το τοπίο από το παράθυρό μου για μεγάλο χρονικό διάστημα πριν από την ανατολή με τίποτα άλλο εκτός από το πρωινό άστρο, το οποίο φάνταζε πολύ μεγάλο».

Οι ερευνητές έχουν καταλήξει στο συμπέρασμα ότι η Αφροδίτη ήταν πράγματι ορατή την αυγή, στην Προβηγκία, την άνοιξη του 1889 και την εποχή εκείνη ήταν κοντά στο φωτεινότερο δυνατό της. Έτσι, το πιο λαμπρό «αστέρι» στον πίνακα, δεξιά από το κυπαρίσσι, είναι στην πραγματικότητα η Αφροδίτη.


άστρο V838 Mon

Μια φωτογραφία από το διαστημικό τηλεσκόπιο Hubble που δημοσιεύθηκε το 2004 έδειχνε ένα μακρινό άστρο, το V838 Mon στον αστερισμό Μονόκερως, να μοιάζει με τα άστρα της «Έναστρης Νύχτας» όπου ο Βαν Γκογκ φαντάζεται το φως τους να στροβιλίζεται. Στο άστρο V838 Mon, που βρίσκεται 20.000 έτη φωτός μακριά από τη Γη, οι φωτεινοί στροβιλισμοί οφείλονται στην σκόνη και στην τυρβώδη ροή των αερίων γύρω από αυτό.




Το 2006, οι ερευνητές J.L. Aragón, Gerardo G. Naumis, M. Bai, M. Torres και P.K. Maini, μετά την δημοσίευση της φωτογραφίας του Hubble, εξέτασαν την μαθηματική συσχέτιση των μοτίβων της τυρβώδους ροής των ρευστών, με τους στροβιλισμούς που απεικόνιζε στους πίνακές του ο Βαν Γκογκ. Σε άρθρο τους με τίτλο «Turbulent luminance in impassioned van Gogh paintings», έδειξαν ότι η συνάρτηση κατανομής της πιθανότητας των στροβιλισμών του φωτός σε ορισμένους πίνακες του μεταϊμπρεσιονιστή ζωγράφου, μοιάζει με την αντίστοιχη κατανομή των μεταβολών της ταχύτητας κατά την τυρβώδη ροή ρευστού, όπως προβλέπει η στατιστική θεωρία του Kolmogorov (που περιγράφει έστω και εν μέρει τη δυναμική των ρευστών). Τη δεκαετία του 1940, ο Σοβιετικός μαθηματικός Αντρέι Κολμογκόροφ περιέγραψε μια μαθηματική σχέση μεταξύ των διακυμάνσεων της ταχύτητας μιας ροής και του ρυθμού με τον οποίο διαχέεται η ενέργειά της, αναπτύσσοντας τη θεωρία της τύρβης του Kolmogorov

Το καλλιτεχνικό ενδιαφέρον εδώ είναι ότι η στατιστική υπογραφή της δυναμικής των ρευστών ανιχνεύεται μόνο στους πίνακες που συνέθεσε ο βαν Γκογκ στην ψυχολογικά διαταραγμένη περίοδο της ζωής του και όχι όταν η ζωή του κυλούσε ήρεμα.







Ο van Gogh και οι στροβιλισμοί του πάλι στο προσκήνιο

Φέτος, μια νέα ανάλυση του πίνακα από επιστήμονες από την Κίνα και τη Γαλλία «αποκαλύπτει» τα κρυμμένα μαθηματικά στην «Έναστρη Νύχτα».

«Φανταστείτε ότι στέκεστε σε μια γέφυρα και παρακολουθείτε το ποτάμι να κυλάει. Θα δείτε στροβιλισμούς στην επιφάνεια, και αυτοί οι στροβιλισμοί δεν είναι τυχαίοι. Εντάσσονται σε συγκεκριμένα μοτίβα και αυτά τα είδη μοτίβων μπορούν να προβλεφθούν από φυσικούς νόμους», δήλωσε ο Γιονγκ Τσιάνγκ Χουάνγκ,  επικεφαλής συγγραφέας της μελέτης η οποία δημοσιεύθηκε στο επιστημονικό περιοδικό Physics of Fluids. Ο Huang είναι ερευνητής στο State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences στο Πανεπιστήμιο Xiamen στη νοτιοανατολική Κίνα.


κλίμακα των 14 βασικών περιδινούμενων σχηματισμών

Με τη χρήση ενός ψηφιακού αντιγράφου του πίνακα, ο Χουάνγκ και οι συνάδελφοί του εξέτασαν την κλίμακα των 14 βασικών περιδινούμενων σχηματισμών για να κατανοήσουν αν συμμορφώνονταν με θεωρίες της φυσικής που περιγράφουν τη μεταφορά ενέργειας από μεγάλης σε μικρής κλίμακας περιδινήσεων καθώς συγκρούονται και αλληλεπιδρούν μεταξύ τους.



Ο ουρανός του πίνακα, καθώς είναι φιλοτεχνημένος και δεν κινείται πραγματικά, δεν μπορεί να μετρηθεί άμεσα, οπότε ο Χουάνγκ και οι συνάδελφοί του υπολόγισαν με ακρίβεια τις πινελιές, συγκρίνοντας το μέγεθός τους με μαθηματικές κλίμακες της τυρβώδους ροής.


Για να μετρήσουν τη φυσική κίνηση, χρησιμοποίησαν τη φωτεινότητα των διαφορετικών χρωμάτων που χρησιμοποίησε ο καλλιτέχνης.

Για να μετρήσουν τη φυσική κίνηση, χρησιμοποίησαν τη φωτεινότητα των διαφορετικών χρωμάτων που χρησιμοποίησε ο καλλιτέχνης.



Έτσι, ανακάλυψαν πως τα μεγέθη των 14 στροβίλων στην «Έναστρη Νύχτα» και η σχετική απόσταση και έντασή τους ακολουθούν τη θεωρία της τύρβης του Kolmogorov. 

Σύμφωνα με τον Χουάνγκ και την επιστημονική ομάδα του, ο πίνακας, σε μικρότερη κλίμακα, αναμειγνύεται με κάποιες δίνες και στροβιλισμούς υποβάθρου με τρόπο που προβλέπεται από τη θεωρία της τύρβης, ακολουθώντας ένα στατιστικό μοτίβο γνωστό ως κλίμακα του Batchelor (Batchelor’s scaling), που καθορίστηκε από τον George Batchelor και περιγράφει μαθηματικά τον τρόπο με τον οποίο τα μικρά σωματίδια, όπως τα παρασυρόμενα φύκια στον ωκεανό ή τα κομμάτια σκόνης στον άνεμο, αναμειγνύονται παθητικά από την τυρβώδη ροή. 

 

 

Άγνοια των μοντέλων – Μελέτη της φύσης

«Φυσικά», είπε ο Χουάνγκ, «ο βαν Γκογκ δεν θα γνώριζε τέτοιες θεωρίες ή εξισώσεις, αλλά πιθανότατα πέρασε πολύ χρόνο παρατηρώντας την τύρβη στη φύση… Νομίζω ότι αυτή η φυσική σχέση πρέπει να είναι ενσωματωμένη στο μυαλό του, γι’ αυτό όταν έκανε αυτόν τον διάσημο πίνακα "Έναστρη Νύχτα", μιμείται την πραγματική τυρβώδη ροή».


Van Gogh alive Athens
Φράση του καλλιτέχνη... Φωτογραφία αρχείου από την έκθεση "Van Gogh Alive" τον Μάρτιο του 2018 στην Αθήνα



Ο Χουάνγκ είπε ότι οι επιστήμονες προσπαθούν εδώ και πολύ καιρό να περιγράψουν την τυρβώδη ροή στη δυναμική των ρευστών με τρόπο που θα τους επιτρέπει να προβλέψουν το φαινόμενο. Μια διεξοδική κατανόηση της τυρβώδους ροής θα βοηθούσε στην πρόγνωση του καιρού, στις αναταράξεις των πτήσεων και σε πολλές άλλες διαδικασίες, ενώ μια πλήρης εξήγηση παραμένει ένα κυρίαρχο μυστήριο της φυσικής.






Πηγές - Παραπομπές

CNN: Turbulentskies of Vincent Van Gogh’s ‘The Starry Night’ align with a scientific theory,study finds

Phys.uoa.gr|Τύρβη

Physics4u

Physicsgg.me

ScienceDirect

TED-Ed|The unexpected math behind van Gogh's "Starry Night"

Turbulent Luminance in Impassioned van Gogh Paintings

University of Thessaly|Εισαγωγή σε Περιβαλλοντικές Ροές-Υπολογιστική Ρευστομηχανική και Τύρβη

Wikipedia.org